cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122994 a(n) = a(n-1)+9*a(n-2) initialized with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 12, 39, 147, 498, 1821, 6303, 22692, 79419, 283647, 998418, 3551241, 12537003, 44498172, 157331199, 557814747, 1973795538, 6994128261, 24758288103, 87705442452, 310530035379, 1099879017447, 3894649335858, 13793560492881, 48845404515603, 172987448951532
Offset: 0

Views

Author

Roger L. Bagula, Sep 22 2006

Keywords

Comments

The two roots of the denominator of the g.f. (for Binet's formula) are -0.393486... and 0.2823756...
Pisano period lengths: 1, 3, 1, 6, 6, 3, 6, 12, 1, 6, 10, 6, 84, 6, 6, 24,144, 3, 72, 6,... - R. J. Mathar, Aug 10 2012

Crossrefs

Cf. A026597.

Programs

Formula

G.f.: -(1+2*x)/(-1+x+9*x^2). a(n) = A015445(n)+2*A015445(n-1). [R. J. Mathar, Aug 12 2009]
a(n) = (1/2+5*sqrt(37)/74) *(1/2+sqrt(37)/2)^(n-1) +(1/2-5*sqrt(37)/74) *(1/2-sqrt(37)/2)^(n-1). [Antonio Alberto Olivares, Jun 07 2011]
a(n) = Sum_{k, 0<=k<=n} A103631(n,k)*3^k. - Philippe Deléham, Dec 17 2011
a(n) = A015445(n) + 2*A015445(n-1), n>0. - Ralf Stephan, Jul 21 2013

Extensions

Definition replaced with the Deleham recurrence of Mar 2009 by the Assoc. Editors of the OEIS, Mar 12 2010