A123017 Semiprimes k such that k+3 is also a semiprime.
6, 22, 35, 46, 55, 62, 74, 82, 91, 115, 118, 119, 142, 143, 155, 158, 166, 202, 203, 206, 214, 215, 218, 259, 262, 295, 298, 299, 302, 323, 326, 355, 358, 362, 391, 395, 451, 466, 478, 482, 502, 511, 514, 526, 535, 542, 551, 559, 562, 583, 586, 611, 623, 626
Offset: 1
Examples
a(1) = 6 because 6 = 2 * 3 is semiprime and 6 + 3 = 9 = 3^2 is semiprime. a(2) = 22 because 22 = 2 * 11 and 22 + 3 = 25 = 5^2. a(3) = 35 because 35 = 5 * 7 and 35 + 3 = 38 = 2 * 19. a(4) = 46 because 46 = 2 * 23 and 46 + 3 = 49 = 7^2. a(5) = 55 because 55 = 5 * 11 and 55 + 3 = 58 = 2 * 29.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
semiprimeQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range@ 670, semiprimeQ[ # ] && semiprimeQ[ # + 3] &] (* Robert G. Wilson v, Aug 31 2007 *) SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,700}],{1,,,1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 03 2017 *)
Extensions
More terms from Robert G. Wilson v, Aug 31 2007
Comments