cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123020 Expansion of (1 -5*x +5*x^2)/((1 -2*x)*(1 -4*x +x^2)).

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 142, 493, 1766, 6443, 23750, 88045, 327406, 1219531, 4546622, 16958765, 63272054, 236096683, 881049142, 3287968813, 12270563966, 45793762763, 170903438510, 637817894125, 2380363943686, 8883629492011
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2006

Keywords

Comments

Denominator of reduced g.f. is essentially the characteristic polynomial of [1, 1, 0; 1, 2, 1; 0, 1, 3]. - Paul Barry, Dec 17 2009

Crossrefs

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 6*Self(n-1) - 9*Self(n-2) +2*Self(n-3): n in [1..31]]; // G. C. Greubel, Jul 11 2021
    
  • Mathematica
    Table[(2^n - ChebyshevT[n + 1, 2] + 4*ChebyshevT[n, 2])/3, {n,0,30}] (* G. C. Greubel, Jul 11 2021 *)
  • Sage
    def a(n): return (1/3)*(2^n - chebyshev_T(n+1, 2) + 4*chebyshev_T(n, 2))
    [a(n) for n in (0..30)] # G. C. Greubel, Jul 11 2021

Formula

From Paul Barry, Dec 17 2009: (Start)
G.f.: 1/(1 -x -x^2/(1 -2*x -x^2/(1-3*x))) = (1-5*x+5*x^2)/(1-6*x+9*x^2-2*x^3).
a(n) = ((2+sqrt(3))/6)*(2-sqrt(3))^n + ((2-sqrt(3))/6)*(2+sqrt(3))^n + 2^n/3. (End)
a(n) = (1/3)*(2^n - ChebyshevT(n+1, 2) + 4*ChebyshevT(n, 2)). - G. C. Greubel, Jul 11 2021
3*a(n) = 2^n +A001075(n-1), n>=1. - R. J. Mathar, Aug 05 2021

Extensions

Edited by N. J. A. Sloane, Jun 13 2007
New name and change of offset by G. C. Greubel, Jul 11 2021