cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038538 Number of semisimple rings with n elements.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 13, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 6, 6, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Comments

Enumeration uses Wedderburn-Artin theorem and fact that a finite division ring is a field.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.
  • John Knopfmacher, Abstract analytic number theory, North-Holland, 1975, pp. 63-64.
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 2001.

Crossrefs

Programs

  • Mathematica
    With[{emax = 7}, f[e_] := f[e] = Coefficient[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[emax]] + 1}, {j, 1, Floor[emax/k^2] + 1}], {x, 0, emax}], x, e]; a[1] = 1; a[n_] := Times @@ f /@ FactorInteger[n][[;; , 2]]; Array[a, 2^emax]] (* Amiram Eldar, Jan 31 2024, using code by Vaclav Kotesovec at A004101 *)
  • PARI
    v004101from1 = [1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197]; \\ From the data-section of A004101.
    A004101(n) = v004101from1[n];
    vecproduct(v) = { my(m=1); for(i=1,#v,m *= v[i]); m; };
    A038538(n) = vecproduct(apply(e -> A004101(e), factorint(n)[, 2])); \\ Antti Karttunen, Nov 18 2017

Formula

Multiplicative with a(p^k) = A004101(k).
For all n, a(A002110(n)) = a(A005117(n)) = 1.
From Amiram Eldar, Jan 31 2024: (Start)
Dirichlet g.f.: Product_{k,m>=1} zeta(k*m^2*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2.499616... = A244285 (see A123030 for a more precise asymptotic formula). (End)

A244285 Decimal expansion of A1*B1, the average number of non-isomorphic semisimple rings of any order, where A1 is Product_{m>1} zeta(m) and B1 is Product_{r*m^2 > 1} zeta(r*m^2).

Original entry on oeis.org

2, 4, 9, 9, 6, 1, 6, 1, 1, 2, 9, 3, 6, 2, 9, 8, 2, 7, 4, 9, 3, 2, 3, 7, 3, 8, 2, 1, 7, 5, 6, 4, 9, 8, 0, 3, 4, 5, 7, 0, 4, 0, 2, 2, 5, 8, 8, 0, 7, 5, 9, 5, 4, 4, 3, 2, 0, 6, 2, 1, 0, 9, 4, 8, 1, 2, 1, 2, 2, 4, 3, 6, 8, 1, 6, 9, 6, 5, 1, 3, 6, 4, 7, 2, 6, 8, 8, 6, 3, 3, 6, 4, 3, 0, 9, 7, 5, 3, 6, 2, 8, 7, 2, 2, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 25 2014

Keywords

Comments

The asymptotic mean of A038538. - Amiram Eldar, Jan 31 2024

Examples

			2.499616112936298274932373821756498034570402258807595443206210948121224368...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.

Crossrefs

Cf. A021002 (A1), A038538, A123030.

Programs

  • Maple
    Digits := 200: z:=product(Zeta(1.0*j), j = 2..1000): for k from 10 by 10 to 50 do print(z*product(product(Zeta(1.0*r*m^2), r = 1..k^2), m = 2..k)); end do; # Vaclav Kotesovec, Jun 11 2020
  • Mathematica
    digits = 20; digitsPlus = 100; n0 = 50; dn = 1; A1 = NProduct[Zeta[m], {m, 2, Infinity}, WorkingPrecision -> digitsPlus]; Clear[B1]; B1[n_] := B1[n] = NProduct[Zeta[r*m^2], {r, 1, n}, {m, 2, n}, WorkingPrecision -> digitsPlus]; B1[n0]; B1[n = n0 + dn]; While[ RealDigits[B1[n], 10, digitsPlus] != RealDigits[B1[n - dn], 10, digitsPlus], Print["n = ", n]; n = n + dn]; RealDigits[A1*B1[n], 10, digits] // First
  • PARI
    prodinf(m = 2, zeta(m)) * prodinf(r = 1, prodinf(m = 2, zeta(r*m^2))) \\ Amiram Eldar, Jan 31 2024

Extensions

More digits from Vaclav Kotesovec, Jun 11 2020
Showing 1-2 of 2 results.