A123030 Partial sums of A038538.
1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 15, 17, 18, 19, 20, 26, 27, 29, 30, 32, 33, 34, 35, 38, 40, 41, 44, 46, 47, 48, 49, 57, 58, 59, 60, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 78, 79, 85, 87, 89, 90, 92, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 122, 123, 124, 125, 127, 128
Offset: 1
Keywords
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{emax = 7}, f[e_] := f[e] = Coefficient[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[emax]] + 1}, {j, 1, Floor[emax/k^2] + 1}], {x, 0, emax}], x, e]; a[1] = 1; a[n_] := Times @@ f /@ FactorInteger[n][[;; , 2]]; Accumulate@ Array[a, 2^emax]] (* Amiram Eldar, Jan 31 2024, using code by Vaclav Kotesovec at A004101 *)
Formula
a(n) = A_1*B_1*n + A_2*B_2*n^(1/2) + A_3*B_3*n^(1/3) + O(n^(50/199+eps)), where A_k = Product_{m>=1, m!=k} zeta(m/k) and B_k = Product_{r>=1, m>=2} zeta(r*m^2/k) (Finch, 2003). - Amiram Eldar, Jan 31 2024
Comments