cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A123030 Partial sums of A038538.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 15, 17, 18, 19, 20, 26, 27, 29, 30, 32, 33, 34, 35, 38, 40, 41, 44, 46, 47, 48, 49, 57, 58, 59, 60, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 78, 79, 85, 87, 89, 90, 92, 93, 96, 97, 100, 101, 102, 103, 105, 106, 107, 109, 122, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Jonathan Vos Post, Jul 07 2008

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.

Crossrefs

Cf. A038538, A244285 (A_1*B_1).

Programs

  • Mathematica
    With[{emax = 7}, f[e_] := f[e] = Coefficient[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[emax]] + 1}, {j, 1, Floor[emax/k^2] + 1}], {x, 0, emax}], x, e]; a[1] = 1; a[n_] := Times @@ f /@ FactorInteger[n][[;; , 2]]; Accumulate@ Array[a, 2^emax]] (* Amiram Eldar, Jan 31 2024, using code by Vaclav Kotesovec at A004101 *)

Formula

a(n) = A_1*B_1*n + A_2*B_2*n^(1/2) + A_3*B_3*n^(1/3) + O(n^(50/199+eps)), where A_k = Product_{m>=1, m!=k} zeta(m/k) and B_k = Product_{r>=1, m>=2} zeta(r*m^2/k) (Finch, 2003). - Amiram Eldar, Jan 31 2024

A052305 Number of semisimple rings with A025487(n) elements: a(n) = A038538(A025487(n)).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 6, 3, 1, 8, 4, 6, 2, 13, 6, 8, 3, 18, 12, 4, 13, 1, 9, 6, 29, 16, 6, 18, 2, 18, 8, 40, 26, 12, 29, 3, 24, 8, 13, 58, 9, 36, 4, 36, 16, 40, 6, 39, 12, 18, 79, 18, 58, 1, 6, 48, 26, 58, 8, 54, 24, 29, 115, 24, 80, 2, 12, 78, 18, 36, 79, 8, 36, 13, 87, 32, 9, 40, 64
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

A369763 Decimal expansion of the asymptotic mean of the ratio A000688(k)/A038538(k).

Original entry on oeis.org

9, 8, 7, 7, 1, 4, 8, 4, 0, 0, 4, 4, 9, 3, 7, 6, 3, 7, 7, 4, 0, 2, 3, 0, 6, 8, 6, 7, 0, 6, 3, 9, 3, 4, 9, 3, 5, 1, 9, 0, 1, 0, 7, 5, 6, 7, 0, 3, 9, 5, 6, 2, 7, 1, 4, 4, 9, 9, 3, 6, 6, 1, 2, 5, 1, 9, 0, 8, 1, 8, 5, 0, 7, 8, 1, 8, 2, 9, 8, 6, 5, 2, 6, 6, 0, 0, 7, 6, 4, 7, 5, 2, 3, 9, 4, 3, 1, 0, 4, 3, 6, 5, 9, 3, 6
Offset: 0

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Comments

The asymptotic mean of the ratio between the number of non-isomorphic abelian groups and the number of non-isomorphic semisimple rings of the same order.
The constant A in Kühleitner's paper (1995).
The ratio is 1 for all biquadratefree numbers (whose asymptotic density is A215267 = 0.923..., see A046100), and smaller than 1 otherwise.

Examples

			0.98771484004493763774023068670639349351901075670395...
		

Crossrefs

Programs

  • PARI
    default(realprecision, 120); my(N=512, x='x+O('x^N), v); v = Vec(1/prod(k=1, sqrtint(N)+1, prod(j=1, 1+N\k^2, 1-x^(j*k^2)))); prodeulerrat((1-1/p)*vecsum(vector(N, i, numbpart(i-1)/(v[i]*p^(i-1))))) \\ after Vaclav Kotesovec at A004101

Formula

Equals Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} A000041(k)/(A004101(k)*p^k)).

A046951 a(n) is the number of squares dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Rediscovered by the HR automatic theory formation program.
a(n) depends only on prime signature of n (cf. A025487, A046523). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
First differences of A013936. Average value tends towards Pi^2/6 = 1.644934... (A013661, A013679). - Henry Bottomley, Aug 16 2001
We have a(n) = A159631(n) for all n < 125, but a(125) = 2 < 3 = A159631(125). - Steven Finch, Apr 22 2009
Number of 2-generated Abelian groups of order n, if n > 1. - Álvar Ibeas, Dec 22 2014 [In other words, number of order-n abelian groups with rank <= 2. Proof: let b(n) be such number. A finite abelian group is the inner direct product of all Sylow-p subgroups, so {b(n)} is multiplicative. Obviously b(p^e) = floor(e/2)+1 (corresponding to the groups C_(p^r) X C_(p^(e-r)) for 0 <= r <= floor(e/2)), hence b(n) = a(n) for all n. - Jianing Song, Nov 05 2022]
Number of ways of writing n = r*s such that r|s. - Eric M. Schmidt, Jan 08 2015
The number of divisors of the square root of the largest square dividing n. - Amiram Eldar, Jul 07 2020
The number of unordered factorizations of n into cubefree powers of primes (1, primes and squares of primes, A166684). - Amiram Eldar, Jun 12 2025

Examples

			a(16) = 3 because the squares 1, 4, and 16 divide 16.
G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + x^10 + ...
		

Crossrefs

One more than A071325.
Differs from A096309 for the first time at n=32, where a(32) = 3, while A096309(32) = 2 (and also A185102(32) = 2).
Sum of the k-th powers of the square divisors of n for k=0..10: this sequence (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: this sequence (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A082293 (a(n)==2), A082294 (a(n)==3).

Programs

  • Haskell
    a046951 = sum . map a010052 . a027750_row
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [#[d: d in Divisors(n)|IsSquare(d)]:n in [1..120]]; // Marius A. Burtea, Jan 21 2020
    
  • Maple
    A046951 := proc(n)
        local a,s;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*(1+floor(op(2,p)/2)) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 17 2012
    # Alternatively:
    isbidivisible := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = d:
    a := n -> nops(select(k -> isbidivisible(n, k), [seq(1..n)])): # Peter Luschny, Jun 13 2025
  • Mathematica
    a[n_] := Length[ Select[ Divisors[n], IntegerQ[Sqrt[#]]& ] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jun 26 2012 *)
    Table[Length[Intersection[Divisors[n], Range[10]^2]], {n, 100}] (* Alonso del Arte, Dec 10 2012 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ DivisorSigma[ 0, d], 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 13 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (Quotient[ #[[2]], 2] + 1 & /@ FactorInteger @ n)]; (* Michael Somos, Jun 13 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / (1 - x^k^2), {k, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 13 2014 *)
    f[p_, e_] := 1 + Floor[e/2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n)=my(f=factor(n));for(i=1,#f[,1],f[i,2]\=2);numdiv(factorback(f)) \\ Charles R Greathouse IV, Dec 11 2012
    
  • PARI
    a(n) = direuler(p=2, n, 1/((1-X^2)*(1-X)))[n]; \\ Michel Marcus, Mar 08 2015
    
  • PARI
    a(n)=factorback(apply(e->e\2+1, factor(n)[,2])) \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A046951(n): return prod((e>>1)+1 for e in factorint(n).values()) # Chai Wah Wu, Aug 04 2024
    
  • Python
    def is_bidivisible(n, d) -> bool: return gcd(n, d) == d and gcd(n//d, d) == d
    def aList(n) -> list[int]: return [k for k in range(1, n+1) if is_bidivisible(n, k)]
    print([len(aList(n)) for n in range(1, 126)])  # Peter Luschny, Jun 13 2025
  • Scheme
    (definec (A046951 n) (if (= 1 n) 1 (* (A008619 (A007814 n)) (A046951 (A064989 n)))))
    (define (A008619 n) (+ 1 (/ (- n (modulo n 2)) 2)))
    ;; Antti Karttunen, Nov 14 2016
    

Formula

a(p^k) = A008619(k) = [k/2] + 1. a(A002110(n)) = 1 for all n. (This is true for any squarefree number, A005117). - Original notes clarified by Antti Karttunen, Nov 14 2016
a(n) = |{(i, j) : i*j = n AND i|j}| = |{(i, j) : i*j^2 = n}|. Also tau(A000188(n)), where tau = A000005.
Multiplicative with p^e --> floor(e/2) + 1, p prime. - Reinhard Zumkeller, May 20 2007
a(A130279(n)) = n and a(m) <> n for m < A130279(n); A008966(n)=0^(a(n) - 1). - Reinhard Zumkeller, May 20 2007
Inverse Moebius transform of characteristic function of squares (A010052). Dirichlet g.f.: zeta(s)*zeta(2s).
G.f.: Sum_{k > 0} x^(k^2)/(1 - x^(k^2)). - Vladeta Jovovic, Dec 13 2002
a(n) = Sum_{k=1..A000005(n)} A010052(A027750(n,k)). - Reinhard Zumkeller, Dec 16 2013
a(n) = Sum_{k = 1..n} ( floor(n/k^2) - floor((n-1)/k^2) ). - Peter Bala, Feb 17 2014
From Antti Karttunen, Nov 14 2016: (Start)
a(1) = 1; for n > 1, a(n) = A008619(A007814(n)) * a(A064989(n)).
a(n) = A278161(A156552(n)). (End)
G.f.: Sum_{k>0}(theta(q^k)-1)/2, where theta(q)=1+2q+2q^4+2q^9+2q^16+... - Mamuka Jibladze, Dec 04 2016
From Antti Karttunen, Nov 12 2017: (Start)
a(n) = A000005(n) - A056595(n).
a(n) = 1 + A071325(n).
a(n) = 1 + A001222(A293515(n)). (End)
L.g.f.: -log(Product_{k>=1} (1 - x^(k^2))^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = Sum_{d|n} A000005(d) * A008836(n/d). - Torlach Rush, Jan 21 2020
a(n) = A000005(sqrt(A008833(n))). - Amiram Eldar, Jul 07 2020
a(n) = Sum_{d divides n} mu(core(d)^2), where core(n) = A007913(n). - Peter Bala, Jan 24 2024

Extensions

Data section filled up to 125 terms and wrong claim deleted from Crossrefs section by Antti Karttunen, Nov 14 2016

A212172 Row n of table represents second signature of n: list of exponents >= 2 in canonical prime factorization of n, in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A056170(n) if A056170(n) is positive, or 1 if A056170(n) = 0.
The multiset of exponents >=2 in the prime factorization of n completely determines a(n) for over 20 sequences in the database (see crossreferences). It also determines the fractions A034444(n)/A000005(n) and A037445(n)/A000005(n).
For squarefree numbers, this multiset is { } (the empty multiset). The use of 0 in the table to represent each n with no exponents >=2 in its prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers will be represented as { }.
For each second signature {S}, there exist values of j and k such that, if the second signature of n is {S}, then A085082(n) is congruent to j modulo k. These values are nontrivial unless {S} = { }. Analogous (but not necessarily identical) values of j and k also exist for each second signature with respect to A088873 and A181796.
Each sequence of integers with a given second signature {S} has a positive density, unlike the analogous sequences for prime signatures. The highest of these densities is 6/Pi^2 = 0.607927... for A005117 ({S} = { }).

Examples

			First rows of table read: 0; 0; 0; 2; 0; 0; 0; 3; 2; 0; 0; 2;...
12 = 2^2*3 has positive exponents 2 and 1 in its canonical prime factorization (1s are often left implicit as exponents). Since only exponents that are 2 or greater appear in a number's second signature, 12's second signature is {2}.
30 = 2*3*5 has no exponents greater than 1 in its prime factorization. The multiset of its exponents >= 2 is { } (the empty multiset), represented in the table with a 0.
72 = 2^3*3^2 has positive exponents 3 and 2 in its prime factorization, as does 108 = 2^2*3^3. Rows 72 and 108 both read {3,2}.
		

Crossrefs

A181800 gives first integer of each second signature. Also see A212171, A212173-A212181, A212642-A212644.
Functions determined by exponents >=2 in the prime factorization of n:
Additive: A046660, A056170.
Other: A007424, A051903 (for n > 1), A056626, A066301, A071325, A072411, A091050, A107078, A185102 (for n > 1), A212180.
Sequences that contain all integers of a specific second signature: A005117 (second signature { }), A060687 ({2}), A048109 ({3}).

Programs

  • Magma
    &cat[IsEmpty(e)select [0]else Reverse(Sort(e))where e is[pe[2]:pe in Factorisation(n)|pe[2]gt 1]:n in[1..102]]; // Jason Kimberley, Jun 13 2012
  • Mathematica
    row[n_] := Select[ FactorInteger[n][[All, 2]], # >= 2 &] /. {} -> 0 /. {k__} -> Sequence[k]; Table[row[n], {n, 1, 100}] (* Jean-François Alcover, Apr 16 2013 *)

Formula

For nonsquarefree n, row n is identical to row A057521(n) of table A212171.

A004101 Number of partitions of n of the form a_1*b_1^2 + a_2*b_2^2 + ...; number of semisimple rings with p^n elements for any prime p.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197, 1549, 2025, 2600, 3377, 4306, 5523, 7000, 8922, 11235, 14196, 17777, 22336, 27825, 34720, 43037, 53446, 65942, 81423, 100033, 122991, 150481, 184149, 224449, 273614, 332291
Offset: 0

Views

Author

Keywords

Comments

The number of semisimple rings with p^n elements does not depend on the prime number p. - Paul Laubie, Mar 05 2024

Examples

			4 = 4*1^2 = 1*2^2 = 3*1^2 + 1*1^2 = 2*1^2 + 2*1^2 = 2*1^2 + 1*1^2 + 1*1^2 = 1*1^2 + 1*1^2 + 1*1^2 + 1*1^2.
		

References

  • J. Knopfmacher, Abstract Analytic Number Theory. North-Holland, Amsterdam, 1975, p. 293.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add(d* mul(1+iquo(i[2], 2),
          i=ifactors(d)[2]), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 26 2013
    sqd:=proc(n) local t1,d; t1:=0; for d in divisors(n) do if (n mod d^2) = 0 then t1:=t1+1; fi; od; t1; end; # A046951
    t2:=mul( 1/(1-x^n)^sqd(n),n=1..65); series(t2,x,60); seriestolist(%); # N. J. A. Sloane, Jun 24 2015
  • Mathematica
    max = 45; A046951 = Table[Sum[Floor[n/k^2], {k, n}], {n, 0, max}] // Differences; f = Product[1/(1-x^n)^A046951[[n]], {n, 1, max}]; CoefficientList[Series[f, {x, 0, max}], x] (* Jean-François Alcover, Feb 11 2014 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}, {j, 1, Floor[nmax/k^2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2017 *)
  • PARI
    N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^(j^2))); Vec(gf) /* Joerg Arndt, May 03 2008 */

Formula

EULER transform of A046951.
a(n) ~ exp(Pi^2 * sqrt(n) / 3 + sqrt(3/(2*Pi)) * Zeta(1/2) * Zeta(3/2) * n^(1/4) - 9 * Zeta(1/2)^2 * Zeta(3/2)^2 / (16*Pi^3)) * Pi^(3/4) / (sqrt(2) * 3^(1/4) * n^(5/8)) [Almkvist, 2006]. - Vaclav Kotesovec, Jan 03 2017

Extensions

More terms, formula and better description from Christian G. Bower, Nov 15 1999
Name clarified by Paul Laubie, Mar 05 2024

A339948 Number of non-isomorphic generalized quaternion rings over Z/nZ.

Original entry on oeis.org

1, 1, 4, 7, 4, 16, 4, 16, 10, 16, 4, 40, 4, 16, 16, 36, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 52, 16, 16, 16
Offset: 1

Views

Author

Keywords

Comments

Generalized quaternion rings over Z/nZ are of the form Z_n/(x^2-a, y^2-b, xy+yx).

Examples

			For n=2 all such rings are isomorphic to Z_n<x,y>/(x^2, y^2, xy+yx), so a(2)=1.
For n=4:
  Z_n<x,y>/(x^2,   y^2,   xy+yx),
  Z_n<x,y>/(x^2,   y^2-1, xy+yx),
  Z_n<x,y>/(x^2,   y^2-2, xy+yx),
  Z_n<x,y>/(x^2,   y^2-3, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-1, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-2, xy+yx),
  Z_n<x,y>/(x^2-3, y^2-3, xy+yx),
so a(4)=7.
		

Crossrefs

Programs

  • Mathematica
    Clear[phi]; phi[1] = phi[2] = 1; phi[4] = 7; phi[8] = 16;
    phi[16] = 36; phi[p_, s_] := 2 s^2 + 2;
    phi[n_] :=  Module[{aux = FactorInteger[n]},Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];
    Table[phi[i], {i,1, 35}]

Formula

If n is odd then a(n) = A286779(n).

A070932 Possible number of units in a finite (commutative or non-commutative) ring.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 36, 40, 42, 44, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 63, 64, 66, 70, 72, 78, 80, 81, 82, 84, 88, 90, 92, 93, 96, 98, 100
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002

Keywords

Comments

This is a list of the numbers of units in R where R ranges over all finite commutative or non-commutative rings.
By considering the ring Z_n and the finite fields GF(q) this sequence contains the values of the Euler function phi(n) (A000010) and prime powers - 1 (A181062). By taking direct product of rings, if n and m belong to the sequence then so does m*n.
Eric M. Rains has shown that these rules generate all terms of this sequence. More precisely, he shows this sequence (with 0 removed) is the multiplicative monoid generated by all numbers of the form q^n-q^{n-1} for n >= 1 and q a prime power (see Rains link).
Since the number of units of F_q[X]/(X^n) is q^n - q^(n-1), restricting to finite commutative rings gives the same sequence. A296241, which is a proper supersequence, allows the ring R to be infinite. - Jianing Song, Dec 24 2021

Crossrefs

A000252 is a subsequence.
A282572 is the subsequence of odd terms.
Proper subsequence of A296241.
The main entries concerned with the enumeration of rings are A027623, A037234, A037291, A037289, A038538, A186116.

Programs

  • Mathematica
    max = 100; A000010 = EulerPhi[ Range[2*max]] // Union // Select[#, # <= max &] &; A181062 = Select[ Range[max], Length[ FactorInteger[#]] == 1 &] - 1; FixedPoint[ Select[ Outer[ Times, #, # ] // Flatten // Union, # <= max &] &, Union[A000010, A181062] ] (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    list(lim)=my(P=1, q, v, u=List()); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2, sqrtint(lim\1+1), P=p; while((P*=p) <= lim+1, listput(u, P-1))); v=vecsort(concat(v, Vec(u)), , 8); u=List([0]); while(#u, v=vecsort(concat(v, Vec(u)),,8); u=List(); for(i=3,#v, for(j=i,#v,P=v[i]*v[j]; if(P>lim,break); if(!vecsearch(v, P), listput(u, P))))); v \\ Charles R Greathouse IV, Jan 08 2013

Extensions

Entry revised by N. J. A. Sloane, Jan 06 2013, Jan 08 2013
Definition clarified by Jianing Song, Dec 24 2021

A244285 Decimal expansion of A1*B1, the average number of non-isomorphic semisimple rings of any order, where A1 is Product_{m>1} zeta(m) and B1 is Product_{r*m^2 > 1} zeta(r*m^2).

Original entry on oeis.org

2, 4, 9, 9, 6, 1, 6, 1, 1, 2, 9, 3, 6, 2, 9, 8, 2, 7, 4, 9, 3, 2, 3, 7, 3, 8, 2, 1, 7, 5, 6, 4, 9, 8, 0, 3, 4, 5, 7, 0, 4, 0, 2, 2, 5, 8, 8, 0, 7, 5, 9, 5, 4, 4, 3, 2, 0, 6, 2, 1, 0, 9, 4, 8, 1, 2, 1, 2, 2, 4, 3, 6, 8, 1, 6, 9, 6, 5, 1, 3, 6, 4, 7, 2, 6, 8, 8, 6, 3, 3, 6, 4, 3, 0, 9, 7, 5, 3, 6, 2, 8, 7, 2, 2, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 25 2014

Keywords

Comments

The asymptotic mean of A038538. - Amiram Eldar, Jan 31 2024

Examples

			2.499616112936298274932373821756498034570402258807595443206210948121224368...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.

Crossrefs

Cf. A021002 (A1), A038538, A123030.

Programs

  • Maple
    Digits := 200: z:=product(Zeta(1.0*j), j = 2..1000): for k from 10 by 10 to 50 do print(z*product(product(Zeta(1.0*r*m^2), r = 1..k^2), m = 2..k)); end do; # Vaclav Kotesovec, Jun 11 2020
  • Mathematica
    digits = 20; digitsPlus = 100; n0 = 50; dn = 1; A1 = NProduct[Zeta[m], {m, 2, Infinity}, WorkingPrecision -> digitsPlus]; Clear[B1]; B1[n_] := B1[n] = NProduct[Zeta[r*m^2], {r, 1, n}, {m, 2, n}, WorkingPrecision -> digitsPlus]; B1[n0]; B1[n = n0 + dn]; While[ RealDigits[B1[n], 10, digitsPlus] != RealDigits[B1[n - dn], 10, digitsPlus], Print["n = ", n]; n = n + dn]; RealDigits[A1*B1[n], 10, digits] // First
  • PARI
    prodinf(m = 2, zeta(m)) * prodinf(r = 1, prodinf(m = 2, zeta(r*m^2))) \\ Amiram Eldar, Jan 31 2024

Extensions

More digits from Vaclav Kotesovec, Jun 11 2020

A370360 Number of labeled semisimple rings with n elements.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 24409921536000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 1

Views

Author

Paul Laubie, Mar 05 2024

Keywords

Comments

Using the Artin-Wedderburn theorem, a finite semisimple ring is a product of matrix algebras over finite field. In particular, if n is squarefree then any semisimple ring of cardinal n is commutative. One can be more precise, indeed all semisimple rings with n elements are commutative if and only if the only 4th power that divides n is 1.
The analogous sequences for abelian groups and cyclic groups are A034382 and A034381, respectively.
In the case of commutative semisimple rings, we get the factorial numbers.

Examples

			For n=4, we have two possible rings: F_4 and F_2 X F_2. We use the notation F_q to denote the finite field with q elements. To compute a(4) we need to know how many ring automorphisms F_4 and F_2 X F_2 admit. For F_4, we have that Aut(F_4) is generated by the Frobenius morphism, hence we have 2 automorphisms. For F_2 X F_2, the only nontrivial automorphism is exchanging the two coordinates, hence we also have 2 automorphisms. Hence:
a(4) = 24/2 + 24/2 = 24.
We can compute a(2^k) for some small values of k:
a(4) = 4! = 24,
a(8) = 8!,
a(16) = 16! + 16!/6,
a(32) = 32! + 32!/6,
a(64) = 64! + 64!/12 + 64!/12,
a(128) = 128! + 128!/36 + 128!/18 + 128!/12,
...
		

Crossrefs

Formula

If n is squarefree then we have a(n) = n!. More precisely, a(n) = n! if and only if the only 4th power that divides n is 1. In particular, n=16 is the smallest n such that a(n) is different from n!.
If n and m are relatively prime, then a(n*m) = (n*m)!*a(n)*a(m)/(n!*m!).
Showing 1-10 of 10 results.