A123066 (Number of numbers <= n with an odd number of distinct prime factors) - (number of numbers <= n with an even number of distinct prime factors).
0, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 5, 6, 5, 4, 5, 6, 5, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 0, -1, 0, -1, -2, -3, -4, -5, -4, -3, -2, -3, -4, -3, -4, -3, -2, -3, -4, -3, -2, -3, -2, -3, -4, -5, -6, -5, -4, -5, -4, -5, -4, -3, -4, -5, -6, -7, -6, -5, -6, -7, -8, -9, -10
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- H. Helfgott and A. Ubis, Primos, paridad y anĂ¡lisis, arXiv:1812.08707 [math.NT], Dec. 2018.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+ `if`(nops(ifactors(n)[2])::odd, 1, -1)) end: seq(a(n), n=1..120); # Alois P. Heinz, Dec 21 2018
-
Mathematica
dpf[n_] := Module[{df = PrimeNu[n]}, If[OddQ[df], 1, -1]]; Join[{0}, Accumulate[ Array[dpf, 100, 2]]] (* Harvey P. Dale, Jul 04 2012 *)
-
Python
from sympy import primenu def A123066(n): return 1+sum(1 if primenu(i)&1 else -1 for i in range(1,n+1)) # Chai Wah Wu, Dec 31 2022
Formula
a(n) = Sum_{k>=1} (-1)^(k-1) * A346617(n,k). - Alois P. Heinz, Aug 19 2021
Comments