A123098 Multiplicative encoding of triangle formed by reading Pascal's triangle mod 2 (A047999).
2, 6, 10, 210, 22, 858, 1870, 9699690, 46, 4002, 7130, 160660290, 20746, 1008940218, 2569288370, 32589158477190044730, 118, 21594, 39530, 3595293030, 94754, 17808161514, 44788794490, 7074421030108255253430, 263258, 141108130806, 281595235990, 296987147493893719182390, 944729501606
Offset: 0
Keywords
Examples
a(0) = 2^T(0,0) = 2^1 = 2. a(1) = 2^T(1,0) * 3^T(1,1) = 2^1 * 3^1 = 6. a(2) = 2^T(2,0) * 3^T(2,1) * 5^T(2,2) = 2^1 * 3^0 * 5^1 = 10. a(3) = 2^T(3,0) * 3^T(3,1) * 5^T(3,2) * 7^T(3,3) = 2^1 * 3^1 * 5^1 * 7^1 = 210. a(4) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 = 22. a(5) = 2^1 * 3^1 * 5^0 * 7^0 * 11^1 * 13^1 = 858. a(6) = 2^1 * 3^0 * 5^1 * 7^0 * 11^1 * 13^0 * 17^1 = 1870. a(7) = 2^1 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1 = 9699690. a(8) = 2^1 * 3^0 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 = 46. a(9) = 2^1 * 3^1 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 = 4002. a(10) = 2^1 * 3^0 * 5^1 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^1 = 7130. a(11) = 2^1 * 3^1 * 5^1 * 7^1 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 * 31^1 * 37^1 = 160660290. a(12) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^0 * 37^0 * 41^1 = 20746. From _N. J. A. Sloane_, Feb 28 2015: (Start) Factorizations of initial terms, from Cobeli-Zaharescu paper: 2 = 2 6 = 2*3 10 = 2*5 210 = 2*3*5*7 22 = 2*11 858 = 2*3*11*13 1870 = 2*5*11*17 9699690 = 2*3*5*7*11*13*17*19 46 = 2*23 4002 = 2*3*23*29 7130 = 2*5*23*31 160660290 = 2*3*5*7*23*29*31*37 20746 = 2*11*23*41 1008940218 = 2*3*11*13*23*29*41*43 2569288370 = 2*5*11*17*23*31*41*47 32589158477190044730 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53 ... (End) From _Jon E. Schoenfield_, Jun 09 2019: (Start) n | Factorization of a(n) ---+----------------------------------------------- 0 | 2 1 | 2* 3 2 | 2 * 5 3 | 2* 3* 5* 7 4 | 2 *11 5 | 2* 3 *11*13 6 | 2 * 5 *11 *17 7 | 2* 3* 5* 7*11*13*17*19 8 | 2 *23 9 | 2* 3 *23*29 10 | 2 * 5 *23 *31 11 | 2* 3* 5* 7 *23*29*31*37 12 | 2 *11 *23 *41 13 | 2* 3 *11*13 *23*29 *41*43 14 | 2 * 5 *11 *17 *23 *31 *41 *47 15 | 2* 3* 5* 7*11*13*17*19*23*29*31*37*41*43*47*53 ... (End)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..510
- C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014.
Crossrefs
Programs
-
Maple
f:=n->mul(ithprime(k+1)^(binomial(n,k) mod 2),k=0..n); [seq(f(n),n=0..40)];
-
Mathematica
a[n_] := Product[Prime[k+1]^Mod[Binomial[n, k], 2], {k, 0, n}]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 01 2018, from Maple *)
-
PARI
a(n) = prod (k=0, n, if (binomial(n,k)%2, prime(k+1), 1)) \\ Rémy Sigrist, Jun 09 2019
-
Python
from operator import mul from functools import reduce from sympy import prime def A123098(n): return reduce(mul,(1 if ~(n-1) & k else prime(k+1) for k in range(n))) # Chai Wah Wu, Feb 08 2016
-
Scheme
(define (A123098 n) (A019565 (A001317 n))) ;; Antti Karttunen, Sep 18 2016
Formula
a(n) = Product_{i=0..n} p(i+1)^(C(n,i) mod 2).
a(n) = Product_{i=0..n} p(i+1)^T(n,i), where T(n,i) are as in A047999 and where Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
From Antti Karttunen, Sep 18 2016: (Start)
(End)
a(0) = 2, and for n > 0, a(n) = A329329(a(n-1), 6). - Peter Munn, Jan 04 2020
Extensions
Further terms from N. J. A. Sloane, Feb 28 2015
Changed offset from 1 to 0, corresponding changes to formulas and examples from Antti Karttunen, Sep 18 2016
Comments