cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123098 Multiplicative encoding of triangle formed by reading Pascal's triangle mod 2 (A047999).

Original entry on oeis.org

2, 6, 10, 210, 22, 858, 1870, 9699690, 46, 4002, 7130, 160660290, 20746, 1008940218, 2569288370, 32589158477190044730, 118, 21594, 39530, 3595293030, 94754, 17808161514, 44788794490, 7074421030108255253430, 263258, 141108130806, 281595235990, 296987147493893719182390, 944729501606
Offset: 0

Views

Author

Jonathan Vos Post, Nov 05 2006

Keywords

Comments

This is to A047999 "Triangle formed by reading Pascal's triangle mod 2" as A007188 "Multiplicative encoding of Pascal triangle: Product p(i+1)^C(n,i)" is to A007318 "Pascal's triangle read by rows." a(2^n - 1) = primorial(2^n) = A002110(A000079(n)). In row(n) the primes with exponent 1 form row(n) of a Sierpinski sieve, so this sequence is a kind of Gödelization of a Sierpinski sieve.
All terms are divisible by 2 and the n-th term, a(n-1), is also divisible by prime(n). This sequence appears as first column of the square array A255483; its second column A276804 is very similar, with all prime factors shifted to the net larger prime (cf. A003961). - M. F. Hasler, Sep 17 2016
a(n) is the n-th power of 6 in the ring defined in A329329. - Peter Munn, Jan 04 2020

Examples

			a(0) = 2^T(0,0) = 2^1 = 2.
a(1) = 2^T(1,0) * 3^T(1,1) = 2^1 * 3^1 = 6.
a(2) = 2^T(2,0) * 3^T(2,1) * 5^T(2,2) = 2^1 * 3^0 * 5^1 = 10.
a(3) = 2^T(3,0) * 3^T(3,1) * 5^T(3,2) * 7^T(3,3) = 2^1 * 3^1 * 5^1 * 7^1 = 210.
a(4) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 = 22.
a(5) = 2^1 * 3^1 * 5^0 * 7^0 * 11^1 * 13^1 = 858.
a(6) = 2^1 * 3^0 * 5^1 * 7^0 * 11^1 * 13^0 * 17^1 = 1870.
a(7) = 2^1 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1 = 9699690.
a(8) = 2^1 * 3^0 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 = 46.
a(9) = 2^1 * 3^1 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 = 4002.
a(10) = 2^1 * 3^0 * 5^1 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^1 = 7130.
a(11) = 2^1 * 3^1 * 5^1 * 7^1 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 * 31^1 * 37^1 = 160660290.
a(12) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^0 * 37^0 * 41^1 = 20746.
From _N. J. A. Sloane_, Feb 28 2015: (Start)
Factorizations of initial terms, from Cobeli-Zaharescu paper:
                     2 = 2
                     6 = 2*3
                    10 = 2*5
                   210 = 2*3*5*7
                    22 = 2*11
                   858 = 2*3*11*13
                  1870 = 2*5*11*17
               9699690 = 2*3*5*7*11*13*17*19
                    46 = 2*23
                  4002 = 2*3*23*29
                  7130 = 2*5*23*31
             160660290 = 2*3*5*7*23*29*31*37
                 20746 = 2*11*23*41
            1008940218 = 2*3*11*13*23*29*41*43
            2569288370 = 2*5*11*17*23*31*41*47
  32589158477190044730 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53
  ... (End)
From _Jon E. Schoenfield_, Jun 09 2019: (Start)
   n | Factorization of a(n)
  ---+-----------------------------------------------
   0 | 2
   1 | 2* 3
   2 | 2   * 5
   3 | 2* 3* 5* 7
   4 | 2         *11
   5 | 2* 3      *11*13
   6 | 2   * 5   *11   *17
   7 | 2* 3* 5* 7*11*13*17*19
   8 | 2                     *23
   9 | 2* 3                  *23*29
  10 | 2   * 5               *23   *31
  11 | 2* 3* 5* 7            *23*29*31*37
  12 | 2         *11         *23         *41
  13 | 2* 3      *11*13      *23*29      *41*43
  14 | 2   * 5   *11   *17   *23   *31   *41   *47
  15 | 2* 3* 5* 7*11*13*17*19*23*29*31*37*41*43*47*53
  ... (End)
		

Crossrefs

Programs

  • Maple
    f:=n->mul(ithprime(k+1)^(binomial(n,k) mod 2),k=0..n);
    [seq(f(n),n=0..40)];
  • Mathematica
    a[n_] := Product[Prime[k+1]^Mod[Binomial[n, k], 2], {k, 0, n}];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 01 2018, from Maple *)
  • PARI
    a(n) = prod (k=0, n, if (binomial(n,k)%2, prime(k+1), 1)) \\ Rémy Sigrist, Jun 09 2019
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A123098(n):
        return reduce(mul,(1 if ~(n-1) & k else prime(k+1) for k in range(n))) # Chai Wah Wu, Feb 08 2016
    
  • Scheme
    (define (A123098 n) (A019565 (A001317 n))) ;; Antti Karttunen, Sep 18 2016
    

Formula

a(n) = Product_{i=0..n} p(i+1)^(C(n,i) mod 2).
a(n) = Product_{i=0..n} p(i+1)^T(n,i), where T(n,i) are as in A047999 and where Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
From Antti Karttunen, Sep 18 2016: (Start)
a(n) = A007913(A007188(n)). [From the first comment.]
a(n) = A019565(A001317(n)).
(End)
a(0) = 2, and for n > 0, a(n) = A329329(a(n-1), 6). - Peter Munn, Jan 04 2020

Extensions

Further terms from N. J. A. Sloane, Feb 28 2015
Changed offset from 1 to 0, corresponding changes to formulas and examples from Antti Karttunen, Sep 18 2016