cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173941 Numbers k such that tau(lambda(k)) = lambda(tau(k)).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 100, 168, 180, 264, 300, 468, 552, 684, 1100, 1128, 1260, 1416, 1848, 1992, 2340, 2568, 3276, 3300, 3600, 3864, 4008, 4296, 4788, 4920, 5208, 5448, 6072, 6312, 7056, 7224, 7896, 8184, 8328, 8616, 9192, 9912
Offset: 1

Views

Author

Michel Lagneau, Nov 26 2010

Keywords

Comments

Previous name: tau(lambda(n)) = lambda(tau(n)) for the sequential application of the number of divisors of n and Carmichael lambda function.
Numbers k such that A000005(A002322(k)) = A002322(A000005(k)).

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 10000 do:if tau(lambda(n))=lambda(tau(n))then
      printf(`%d, `,n):else fi:od:
  • Mathematica
    Cases[Range[1000], k_ /; DivisorSigma[0,CarmichaelLambda[k]] == CarmichaelLambda[DivisorSigma[0,k]]]
  • PARI
    lambda(n) = lcm(znstar(n)[2]); \\ A002322
    isok(k) = numdiv(lambda(k)) == lambda(numdiv(k)); \\ Michel Marcus, Jul 17 2019

Extensions

Name edited by Michel Marcus, Mar 18 2016

A173942 Numbers n such that sigma(lambda(n)) = lambda(sigma(n)).

Original entry on oeis.org

1, 9, 18, 36, 63, 72, 126, 252, 504, 712, 729, 1458, 1716, 2136, 2916, 2982, 3484, 3588, 4402, 5103, 5467, 5832, 7120, 7332, 8800, 9798, 9894, 10206, 10452, 11928, 12948, 13192, 13851, 14952, 17420, 17608, 17963
Offset: 1

Views

Author

Michel Lagneau, Nov 26 2010

Keywords

Comments

Previous name: sigma(lambda(n)) = lambda(sigma(n)) for the sequential application of the sum of divisors of n and Carmichael lambda functions.
Numbers n such that A000203(A002322(n))=A002322(A000203(n)).

Examples

			36 is in the sequence because:
sigma(lambda(36)) = sigma(6) = 12,
lambda(sigma(36)) = lambda(91) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 20000 do:if sigma(lambda(n))=lambda(sigma(n))then
      printf(`%d, `,n):else fi:od:
  • Mathematica
    Cases[Range[20000], k_ /; DivisorSigma[1,CarmichaelLambda[k]] == CarmichaelLambda[DivisorSigma[1,k]]]

Extensions

Name edited by Michel Marcus, Mar 18 2016
Showing 1-2 of 2 results.