cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123111 1+n^2+n^3+n^5+n^7; 10101101 in base n.

Original entry on oeis.org

5, 173, 2467, 17489, 81401, 287965, 840743, 2130497, 4842829, 10101101, 19649675, 36082513, 63122177, 105954269, 171622351, 269488385, 411763733, 614115757, 896355059, 1283208401, 1805182345, 2499522653, 3411274487, 4594448449
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

4th row, A(4,n), of the infinite array A(k,n) = 1 + SUM[i=1..k]n^prime(i). If we deem prime(0) = 1, the array is A(k,n) = SUM[i=0..k]n^prime(i). The first row is A002522 = 1 + n^2. The second row is A098547 = 1 + n^2 + n^3. Row 4 (the current sequence) is prime for n = 1, 2, 3, 4, 5, 7, 10, 18, 19, 23, 25.

Crossrefs

Programs

  • Maple
    seq(1 + n^2 + n^3 + n^5 + n^7, n=1..100); # Robert Israel, Sep 02 2014
  • Mathematica
    Table[Total[n^Prime[Range[4]]]+1,{n,30}] (* Harvey P. Dale, Jan 01 2014 *)
  • PARI
    Vec(-x*(x^7-9*x^6-127*x^5-1227*x^4-2317*x^3-1223*x^2-133*x-5)/(x-1)^8 + O(x^100)) \\ Colin Barker, Sep 02 2014

Formula

a(n) = 1 + n^2 + n^3 + n^5 + n^7 = 10101101 (base n) = 1 + SUM[i=1..4]n^prime(i).
G.f.: -x*(x^7-9*x^6-127*x^5-1227*x^4-2317*x^3-1223*x^2-133*x-5) / (x-1)^8. - Colin Barker, Sep 02 2014
a(n+7)-7*a(n+6)+21*a(n+5)-35*a(n+4)+35*a(n+3)-21*a(n+2)+7*a(n+1)-a(n)=5040. - Robert Israel, Sep 02 2014