A123121 Length of the n-th Zimin word (A082215(n)).
1, 3, 7, 15, 31, 63, 127, 255, 511, 1024, 2050, 4102, 8206, 16414, 32830, 65662, 131326, 262654, 525310, 1050622, 2101246, 4202494, 8404990, 16809982, 33619966, 67239934, 134479870, 268959742, 537919486, 1075838974, 2151677950, 4303355902, 8606711806
Offset: 1
Examples
The Zimin words are defined by Z_1 = 1, Z_n = Z_{n-1}nZ_{n-1}. So the Zimin words are 1, 121, 1213121, 121312141213121 ...
References
- M. Lothaire, Algebraic combinatorics on words, Cambridge University Press, Cambridge, 2002.
Links
- Jiří Balun, Tomáš Masopust, and Petr Osička, Speed Me up if You Can: Conditional Lower Bounds on Opacity Verification, arXiv:2304.09920 [cs.FL], 2023.
- J. Cooper and D. Rorabaugh, Bounds on Zimin Word Avoidance, arXiv:1409.3080 [math.CO], 2014; Congressus Numerantium, 222 (2014), 87-95.
- L. J. Cummings and M. Mays, A one-sided Zimin construction, Electron. J. Combin. 8 (2001), #R27.
- A. I. Zimin, Blocking sets of terms, Math. USSR Sbornik, 47 (1984), No. 2, 353-364.
Crossrefs
Cf. A082215.
Programs
-
Magma
[n le 1 select 1 else 2*Self(n-1) + Ceiling(Log(n+1)/Log(10)): n in [1..40]]; // Vincenzo Librandi, Sep 26 2015
-
Maple
A[1]:= 1: for i from 2 to 100 do A[i]:= 2*A[i-1]+ilog10(i+1) od: seq(A[i],i=1..100); # Robert Israel, Sep 18 2014
Formula
a(n) = 2*a(n-1) + ceiling(log_10(n+1)).
G.f.: sum(j>=1, x^(10^j))/(1-3*x+2*x^2). - Robert Israel, Sep 18 2014
Extensions
More terms from Vincenzo Librandi, Sep 26 2015
Comments