A123126 Absolute value of coefficient of X^2 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.
1, 1, 4, 1, 31, 22, 1, 33, 4, 141, 199, 10, 209, 113, 604, 1473, 375, 1174, 1521, 2721, 9580, 5501, 6671, 14346, 15681, 57409, 56596, 44577, 112463, 119382, 333313, 480641, 360628, 800973, 1007191, 1988362, 3628369, 3160689, 5525420, 8309793
Offset: 1
Keywords
Examples
a(5) = 31 because the characteristic polynomial of M^5 is X^5 - 31*X^4 + 49*X^3 - 31*X^2 + 9*X - 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10) )); // G. C. Greubel, Aug 03 2021 -
Maple
with(linalg): M[1]:=matrix(5,5,[1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0]): for n from 2 to 45 do M[n]:=multiply(M[n-1],M[1]) od: seq(-coeff(charpoly(M[n],x),x,2),n=1..45); # Emeric Deutsch
-
Mathematica
f[n_]:= CoefficientList[CharacteristicPolynomial[MatrixPower[{{1,1,1,1,1}, {1,0,0, 0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}, n], x], x][[3]]; Array[f, 40] (* Robert G. Wilson v *)
-
Sage
def A123126_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10) ).list() a=A123126_list(40); a[1:] # G. C. Greubel, Aug 03 2021
Formula
G.f.: x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10). - Colin Barker, May 16 2013
Extensions
Edited by N. J. A. Sloane, Oct 24 2006
More terms from Emeric Deutsch and Robert G. Wilson v, Oct 24 2006
Comments