cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123126 Absolute value of coefficient of X^2 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.

Original entry on oeis.org

1, 1, 4, 1, 31, 22, 1, 33, 4, 141, 199, 10, 209, 113, 604, 1473, 375, 1174, 1521, 2721, 9580, 5501, 6671, 14346, 15681, 57409, 56596, 44577, 112463, 119382, 333313, 480641, 360628, 800973, 1007191, 1988362, 3628369, 3160689, 5525420, 8309793
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2006

Keywords

Comments

Let P(x) = X^5 - X^4 - X^3 - X^2 - X - 1 and X1, X2, X3, X4, X5 its roots. Then a(n) = (X1*X2*X3)^n + (X1*X2*X4)^n + (X1*X2*X5)^n + ... + (X3*X4*X5)^n.

Examples

			a(5) = 31 because the characteristic polynomial of M^5 is X^5 - 31*X^4 + 49*X^3 - 31*X^2 + 9*X - 1.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10) )); // G. C. Greubel, Aug 03 2021
    
  • Maple
    with(linalg): M[1]:=matrix(5,5,[1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0]): for n from 2 to 45 do M[n]:=multiply(M[n-1],M[1]) od: seq(-coeff(charpoly(M[n],x),x,2),n=1..45); # Emeric Deutsch
  • Mathematica
    f[n_]:= CoefficientList[CharacteristicPolynomial[MatrixPower[{{1,1,1,1,1}, {1,0,0, 0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}, n], x], x][[3]]; Array[f, 40] (* Robert G. Wilson v *)
  • Sage
    def A123126_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10) ).list()
    a=A123126_list(40); a[1:] # G. C. Greubel, Aug 03 2021

Formula

G.f.: x*(1 +3*x^2 -4*x^3 +30*x^4 -18*x^5 -21*x^6 -16*x^7 -9*x^8 -10*x^9)/(1 -x -x^3 +x^4 -6*x^5 +3*x^6 +3*x^7 +2*x^8 +x^9 +x^10). - Colin Barker, May 16 2013

Extensions

Edited by N. J. A. Sloane, Oct 24 2006
More terms from Emeric Deutsch and Robert G. Wilson v, Oct 24 2006