A123131 Largest order of permutations of n elements with no fixed points.
2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 42, 84, 105, 140, 210, 210, 420, 280, 420, 420, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 4620, 9240, 5544, 13860, 9240, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 60060, 60060, 120120, 72072, 180180
Offset: 2
Keywords
Examples
For n=22 we have a(22)=420 since 22 = 4 + 5 + 6 + 7 = 3 + 3 + 4 + 5 + 7 and lcm([4, 5, 6, 7]) = lcm([3, 3, 4, 5, 7]) = 420. For n=26 we have a(26)=1155 since 26 = 3 + 5 + 7 + 11 and lcm([3,5,7,11]) = 1155.
Links
- Gheorghe Coserea, Table of n, a(n) for n = 2..124
- Gheorghe Coserea, Partitions solutions for n = 2..124
- J.-L. Nicolas, Ordre maximal d’un élément du groupe S_n des permutations et «highly composite numbers», Bull. Math. Soc. France, 97 (1969), 129-191.
Crossrefs
Cf. A000793.
Programs
-
PARI
seq(N) = { my(a = vector(N+1,n,n)); for (n=5, #a, forpart(p=n, a[n] = max(a[n],lcm(Vec(p))), [2, n-2])); a[2..#a]; }; seq(48) \\ Gheorghe Coserea, Dec 22 2017