A123158 Square array related to Bell numbers read by antidiagonals.
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 5, 1, 52, 52, 37, 22, 6, 1, 203, 203, 151, 99, 31, 9, 1, 877, 877, 674, 471, 160, 61, 10, 1, 4140, 4140, 3263, 2386, 856, 385, 75, 14, 1, 21147, 21147, 17007, 12867, 4802, 2416, 520, 135, 15, 1
Offset: 0
Examples
Square array, A(n, k), begins: 1, 1, 1, 1, 1, ... (Row n=0: A000012); 1, 2, 3, 5, 6, ... (Row n=1: A117142); 2, 5, 10, 22, 31, ...; 5, 15, 37, 99, 160, ...; 15, 52, 151, 471, 856, ...; 52, 203, 674, 2386, 4802, ...; Antidiagonals, T(n, k), begin as: 1; 1, 1; 2, 2, 1; 5, 5, 3, 1; 15, 15, 10, 5, 1; 52, 52, 37, 22, 6, 1; 203, 203, 151, 99, 31, 9, 1; 877, 877, 674, 471, 160, 61, 10, 1;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Crossrefs
Programs
-
Magma
function A(n,k) if k lt 0 or n lt 0 then return 0; elif n eq 0 then return 1; elif (k mod 2) eq 1 then return A(n,k-1) + (1/2)*(k+1)*A(n-1,k+1); else return A(n,k-1) + A(n-1,k+1); end if; end function; T:= func< n,k | A(n-k,k) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
-
Mathematica
A[0, _?NonNegative] = 1; A[n_, k_]:= A[n, k]= If[n<0 || k<0, 0, If[OddQ[k], A[n, k-1] + (1/2)(k+1) A[n-1, k+1], A[n, k-1] + A[n-1, k+1]]]; Table[A[n-k, k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Feb 21 2020 *)
-
SageMath
@CachedFunction def A(n,k): if (k<0 or n<0): return 0 elif (n==0): return 1 elif (k%2==1): return A(n,k-1) +(1/2)*(k+1)*A(n-1,k+1) else: return A(n,k-1) +A(n-1,k+1) def T(n,k): return A(n-k,k) flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jul 18 2023
Formula
A(n, k) = 0 if n < 0, A(0, k) = 1 for k >= 0, A(n, k) = A(n, k-1) + (1/2)*(k+1)*A(n-1, k+1) if k is an odd number, A(n, k) = A(n, k-1) + A(n-1, k+1) if k is an even number (array).
A(n, 0) = A000110(n).
A(n, 1) = A000110(n+1).
A(n, 2) = A005493(n).
A(n, 3) = A033452(n).
A(n, 4) = A003128(n+2).
T(n, k) = A(n-k, k) (antidiagonals).