cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123301 Triangle read by rows: T(n,k) is the number of specially labeled bicolored nonseparable graphs with k points in one color class and n-k points in the other class. "Special" means there are separate labels 1,2,...,k and 1,2,...,n-k for the two color classes (n >= 2, k = 1,...,n-1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 34, 1, 0, 0, 1, 199, 199, 1, 0, 0, 1, 916, 7037, 916, 1, 0, 0, 1, 3889, 117071, 117071, 3889, 1, 0, 0, 1, 15982, 1535601, 6317926, 1535601, 15982, 1, 0, 0, 1, 64747, 18271947, 228842801, 228842801, 18271947
Offset: 2

Views

Author

N. J. A. Sloane, Nov 12 2006

Keywords

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,    0;
  0, 1,    1,      0;
  0, 1,   34,      1,      0;
  0, 1,  199,    199,      1,    0;
  0, 1,  916,   7037,    916,    1, 0;
  0, 1, 3889, 117071, 117071, 3889, 1, 0;
  ...
Formatted as an array:
=================================================
k/j | 1 2    3       4         5           6
--- +-------------------------------------------
  1 | 1 0    0       0         0           0 ...
  2 | 0 1    1       1         1           1 ...
  3 | 0 1   34     199       916        3889 ...
  4 | 0 1  199    7037    117071     1535601 ...
  5 | 0 1  916  117071   6317926   228842801 ...
  6 | 0 1 3889 1535601 228842801 21073662977 ...
  ...
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

Central coefficients are A005334.

Programs

  • PARI
    G(n)={sum(i=0, n, x^i*(sum(j=0, n, y^j*2^(i*j)/(i!*j!)) + O(y*y^n))) + O(x*x^n)}
    \\ this switches x/y halfway through because PARI only does serreverse in x.
    B(n)={my(p=log(G(n))); p=subst(deriv(p,y), x, serreverse(x*deriv(p,x))); p=substvec(p, [x,y], [y,x]); intformal(log(x/serreverse(x*p)))}
    M(n)={my(p=B(n)); matrix(n,n,i,j,polcoef(polcoef(p,j),i)*i!*j!)}
    { my(A=M(6)); for(n=1, #A~, print(A[n,])) } \\ Andrew Howroyd, Jan 04 2021

Formula

A004100(n) = (1/2) * Sum_{k=1..n-1} binomial(n,k)*T(n,k). - Andrew Howroyd, Jan 03 2021

Extensions

Offset corrected by Andrew Howroyd, Jan 04 2021