A123327 a(n) = A000203(n) + A004125(n).
1, 3, 5, 8, 10, 15, 16, 23, 25, 31, 34, 45, 42, 55, 60, 67, 69, 86, 84, 103, 102, 113, 122, 145, 134, 154, 165, 180, 181, 210, 199, 230, 232, 251, 266, 289, 271, 308, 325, 348, 339, 380, 369, 412, 417, 430, 451, 498, 471, 513, 521, 552, 559, 612, 601, 640, 633
Offset: 1
Examples
1(=1+0), 3(=3+0), 5(=4+1), 8(=7+1), 10(=6+4), 15(=12+3), 16(=8+8), etc.
Programs
-
Mathematica
Lim=57;s2=Table[Sum[Mod[n, k], {k, 2, n-1}], {n, Lim}];Table[DivisorSigma[1, n]+s2[[n]],{n,Lim}] (* James C. McMahon, Nov 20 2024 *)
-
Python
from math import isqrt def A123327(n): return n**2+((s:=isqrt(n-1))**2*(s+1)-sum((q:=(n-1)//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023
Formula
Extensions
Corrected (83 replaced by 103) by R. J. Mathar, May 21 2010
Edited by N. J. A. Sloane, Feb 02 2014, merging A162383 from Juri-Stepan Gerasimov with the present sequence. Thanks to Omar E. Pol for noticing the duplication.
Comments