cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123373 a(n) = Sum_{i=1..n} (Sum_{j=1..n} prime(i)^prime(j)).

Original entry on oeis.org

4, 48, 3598, 924780, 287358579128, 339575512147572, 836406636653653232322, 2225332017808171682043720, 21158384827910606570843063431876, 2570789828135881020104992992114519012237948
Offset: 1

Views

Author

Alexander Adamchuk, Oct 12 2006

Keywords

Comments

p divides a(p-1) for prime p = {2, 3, 5, 23, 29, ...}.
All terms are even.
2^2 divides a(n) for n = {1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 21, 25, 26, 29, 30, 33, 37, 41, 45, 48, 49, 50, 52, ...}.
2^3 divides a(n) for n = {2, 5, 8, 12, 13, 16, 18, 21, 29, 37, 45, 48, 50, 52, 53, 58, 61, 64, 69, 76, 77, 85, 88, 93, 94, 98, ...}.
2^4 divides a(n) for n = {2, 12, 13, 18, 29, 45, 53, 58, 64, 76, 77, 93, 102, 109, 112, 125, 128, 133, 141, 149, 150, 157, 170, ...}.
2^5 divides a(n) for n = {12, 13, 18, 53, 58, 64, 77, 93, 102, 112, 141, 149, 150, 173, 178, 188, 190, 196, 205, 232, 234, 237, ...}.
2^6 divides a(n) for n = {13, 58, 64, 102, 150, 173, 178, 190, 205, 232, 234, 237, 245, 277, 285, 290, 325, 333, 382, 429, 434, ...}.
2^7 divides a(n) for n = {13, 58, 64, 150, 173, 178, 205, 234, 325, 382, 472, 573, 592, 596, 621, 628, 653, 757, 796, 893, 950, ...}.
2^8 divides a(n) for n = {13, 58, 64, 178, 205, 325, 382, 573, 653, 757, ...}.
2^9 divides a(n) for n = {13, 58, 64, 178, 325, 382, 653, 757, ...}.
2^10 divides a(n) for n = {64, 178, ...}.
2^11 divides a(n) for n = {64, 178, ...}.
2^12 divides a(n) for n = {178, ...}.

Crossrefs

Cf. A086787 (Sum_{i=1..n} (Sum_{j=1..n} i^j)), A122004.

Programs

  • Mathematica
    Table[Sum[Sum[Prime[i]^Prime[j],{i,1,n}],{j,1,n}],{n,1,13}]
  • PARI
    for(n=1,10, print1(sum(j=1,n, sum(k=1,n, (prime(k))^(prime(j)))), ", ")) \\ G. C. Greubel, Oct 25 2017
    
  • Python
    from sympy import prime
    def A123373(n): return sum(prime(i)**prime(j) for i in range(1,n+1) for j in range(1,n+1)) # Chai Wah Wu, Jan 08 2022