A123382 Triangle T(n,k), 0 <= k <= n, defined by : T(n,k) = 0 if k < 0, T(0,k) = 0^k, (n+2)*(2*n-2*k+1)*T(n,k) = (2*n+1)*( 4*(2*n-2*k+1)*T(n-1,k-1) + (n+2*k+2)*T(n-1,k) ).
1, 1, 4, 1, 15, 20, 1, 35, 168, 112, 1, 66, 714, 1680, 672, 1, 110, 2178, 11352, 15840, 4224, 1, 169, 5434, 51051, 156156, 144144, 27456, 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040, 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672, 1, 456, 42636, 1337220, 17073134
Offset: 0
Examples
Triangle begins: 0: 1; 1: 1, 4; 2: 1, 15, 20; 3: 1, 35, 168, 112; 4: 1, 66, 714, 1680, 672; 5: 1, 110, 2178, 11352, 15840, 4224; 6: 1, 169, 5434, 51051, 156156, 144144, 27456; 7: 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040; 8: 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672; .....
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965).
- Germain Kreweras, page 93 of "Sur une classe de problèmes de dénombrement...", containing the defining formula for this sequence.
Programs
-
Mathematica
T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := T[n, k] = (2*n + 1)*(4*(2*n - 2*k + 1)*T[n - 1, k - 1] + (n + 2*k + 2)*T[n - 1, k])/((n + 2)*(2*n - 2*k + 1)); Table[If[k < 0, 0, T[n, k]], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 13 2017 *)
-
Sage
@CachedFunction def T(n,k): if k < 0: return 0 if n < 0: return 0 if n == 0: return int( k==0 ) if k == 0: return 1 return ( (2*n+1)*( 4*(2*n-2*k+1)*T(n-1,k-1) + (n+2*k+2)*T(n-1,k) ) ) / ((n+2)*(2*n-2*k+1)) for n in [0..16]: print([T(n,k) for k in range(0,n+1)]) # Joerg Arndt, Nov 21 2014
Formula
T(n,n) = A003645(n).
Extensions
Corrected name, added more terms, Joerg Arndt, Nov 21 2014
Comments