cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123382 Triangle T(n,k), 0 <= k <= n, defined by : T(n,k) = 0 if k < 0, T(0,k) = 0^k, (n+2)*(2*n-2*k+1)*T(n,k) = (2*n+1)*( 4*(2*n-2*k+1)*T(n-1,k-1) + (n+2*k+2)*T(n-1,k) ).

Original entry on oeis.org

1, 1, 4, 1, 15, 20, 1, 35, 168, 112, 1, 66, 714, 1680, 672, 1, 110, 2178, 11352, 15840, 4224, 1, 169, 5434, 51051, 156156, 144144, 27456, 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040, 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672, 1, 456, 42636, 1337220, 17073134
Offset: 0

Views

Author

Philippe Deléham, Oct 13 2006

Keywords

Comments

G. Kreweras explains that since the rows of A140136 are symmetric, they can be considered as linear combinations of the odd-indexed rows of the Pascal triangle. For instance, (1,1) = 1*(1,1) and (1,7,7,1) = 1*(1,3,3,1) + 4*(0,1,1,0) and (1,20,75,75,10,1) = 1*(1,5,10,10,5,1) + 15*(0,1,3,3,1) + 20*(0,0,1,1,0,0). These coefficients (1; 1, 4; 1, 15, 20;) are the rows of this triangle. - Michel Marcus, Nov 17 2014

Examples

			Triangle begins:
0: 1;
1: 1, 4;
2: 1, 15, 20;
3: 1, 35, 168, 112;
4: 1, 66, 714, 1680, 672;
5: 1, 110, 2178, 11352, 15840, 4224;
6: 1, 169, 5434, 51051, 156156, 144144, 27456;
7: 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040;
8: 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672;
.....
		

Programs

  • Mathematica
    T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := T[n, k] = (2*n + 1)*(4*(2*n - 2*k + 1)*T[n - 1, k - 1] + (n + 2*k + 2)*T[n - 1, k])/((n + 2)*(2*n - 2*k + 1)); Table[If[k < 0, 0, T[n, k]], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 13 2017 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if k < 0: return 0
        if n < 0: return 0
        if n == 0: return int( k==0 )
        if k == 0: return 1
        return ( (2*n+1)*( 4*(2*n-2*k+1)*T(n-1,k-1) + (n+2*k+2)*T(n-1,k) ) ) / ((n+2)*(2*n-2*k+1))
    for n in [0..16]:
        print([T(n,k) for k in range(0,n+1)])
    # Joerg Arndt, Nov 21 2014

Formula

T(n,n) = A003645(n).

Extensions

Corrected name, added more terms, Joerg Arndt, Nov 21 2014