A123477 Expansion of (1 - b(q)) / 3 in powers of q where b(q) is a cubic AGM theta function.
1, 0, -2, 1, 0, 0, 2, 0, -2, 0, 0, -2, 2, 0, 0, 1, 0, 0, 2, 0, -4, 0, 0, 0, 1, 0, -2, 2, 0, 0, 2, 0, 0, 0, 0, -2, 2, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, -2, 3, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, -4, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, 2, 0, 0, 2, 0, -2, 0, 0, -4, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1
Examples
G.f. = q - 2*q^3 + q^4 + 2*q^7 - 2*q^9 - 2*q^12 + 2*q^13 + q^16 + 2*q^19 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv preprint arXiv:1610.07793 [math.NT], 2016.
Programs
-
Maple
A123477 := proc(n) local a,pe,p,e; a := 1; for pe in ifactors(n)[2] do p := op(1,pe) ; e := op(2,pe) ; if modp(p,6) = 1 then a := a*(e+1) ; elif modp(p,6) in {2,5} then a := a*(1+(-1)^e)/2 ; elif e > 0 then a := -2*a ; end if; end do: a ; end proc: seq(A123477(n),n=1..100) ; # R. J. Mathar, Feb 22 2021
-
Mathematica
a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, -3, 1, -1, 3, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* Michael Somos, Dec 10 2017 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, -3, 1, -1, 3, 1, -1] [d%9+1]))};
-
PARI
{a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, p%6==1, e+1, !(e%2))))};
Formula
Moebius transform is period 9 sequence [1, -1, -3, 1, -1, 3, 1, -1, 0, ...].
a(n) is multiplicative and a(p^e) = -2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6).
Comments