cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123487 Smallest prime q such that (q^p-1)/(q-1) is prime, where p = prime(n); or 0 if no such prime q exists.

Original entry on oeis.org

2, 2, 2, 2, 5, 2, 2, 2, 113, 151, 2, 61, 53, 89, 5, 307, 19, 2, 491, 3, 11, 271, 41, 2, 271, 359, 3, 2, 79, 233, 2, 7, 13, 11, 5, 29, 71, 139, 127, 139, 2003, 5, 743, 673, 593, 383, 653, 661, 251, 6389, 2833, 223, 163, 37, 709, 131, 41, 2203, 941, 2707, 13, 1283, 383
Offset: 1

Views

Author

Alexander Adamchuk, Sep 30 2006, Oct 02 2006

Keywords

Comments

Corresponding primes (q^p-1)/(q-1) are listed in A123488.
a(n) coincides with A066180(n) when A066180(n) is prime or 0.
From Robert G. Wilson v, Dec 28 2016: (Start)
Conjecture: Never is a(n) equal to 0.
Records: 2, 5, 113, 151, 307, 491, 2003, 6389, 7883, 11813, 18587, 31721, 40763, ... ;
First occurrence of the k_th prime: 1, 20, 5, 32, 21, 33, 81, 17, ... ;
Positions where two occurs: 1, 2, 3, 4, 6, 7, 8, 11, 18, 24, 28, 31, 98, 111, ... ;
Positions where three occurs: 20, 27, 100, 182, ... ;
Positions where five occurs: 5, 15, 35, 42, 114, 158, ... ; etc. (End)
Jones & Zvonkin conjecture (as did Robert G. Wilson v above) that a(n) > 0 for all n. - Charles R Greathouse IV, Jul 23 2021

Crossrefs

Programs

  • Mathematica
    f[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]; Array[f, 63](* Davin Park, Dec 28 2016 and Robert G. Wilson v, Dec 28 2016 *)
  • PARI
    a(n) = {my(x = 2); while (!isprime(polcyclo(prime(n), x)), x= nextprime(x+1)); x;} \\ Michel Marcus, Dec 10 2016