A123487 Smallest prime q such that (q^p-1)/(q-1) is prime, where p = prime(n); or 0 if no such prime q exists.
2, 2, 2, 2, 5, 2, 2, 2, 113, 151, 2, 61, 53, 89, 5, 307, 19, 2, 491, 3, 11, 271, 41, 2, 271, 359, 3, 2, 79, 233, 2, 7, 13, 11, 5, 29, 71, 139, 127, 139, 2003, 5, 743, 673, 593, 383, 653, 661, 251, 6389, 2833, 223, 163, 37, 709, 131, 41, 2203, 941, 2707, 13, 1283, 383
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..205
- Gareth A. Jones and Alexander K. Zvonkin, Groups of prime degree and the Bateman-Horn Conjecture, arXiv:2106.00346 [math.GR], 2021.
Programs
-
Mathematica
f[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]; Array[f, 63](* Davin Park, Dec 28 2016 and Robert G. Wilson v, Dec 28 2016 *)
-
PARI
a(n) = {my(x = 2); while (!isprime(polcyclo(prime(n), x)), x= nextprime(x+1)); x;} \\ Michel Marcus, Dec 10 2016
Comments