A123509 Rohrbach's problem: a(n) is the largest integer such that there exists a set of n integers that is a basis of order 2 for (0, 1, ..., a(n)-1).
1, 3, 5, 9, 13, 17, 21, 27, 33, 41, 47, 55, 65, 73, 81, 93, 105, 117, 129, 141, 153, 165, 181, 197, 213
Offset: 1
Examples
Example: 8[3]: 0,1,3,4 means {0,1,2,...,8} is covered thus: 0=0+0, 1=0+1, 2=1+1, 3=0+3, 4=0+4=1+3, 5=1+4, 6=3+3, 7=3+4, 8=4+4. N[q]: set ------------------------------ 3[2]: 0,1, 4[3]: 0,1,2, 5[3]: 0,1,2, 6[3]: 0,2,3, 7[4]: 0,1,2,3, 8[4]: 0,1,3,4, 9[4]: 0,1,3,4, 10[5]: 0,1,2,4,5, 11[5]: 0,1,2,4,5, 12[5]: 0,1,3,5,6, 13[5]: 0,1,3,5,6, 14[6]: 0,1,2,4,6,7, 15[6]: 0,1,2,4,6,7, 16[6]: 0,1,3,5,7,8, 17[6]: 0,1,3,5,7,8, 18[6]: 0,2,3,7,8,10, 19[7]: 0,1,2,4,6,8,9, 20[7]: 0,1,3,5,7,9,10, 21[7]: 0,1,3,5,7,9,10, 22[7]: 0,2,3,7,8,10,11, 23[8]: 0,1,2,4,6,8,10,11, 24[8]: 0,1,3,5,7,9,11,12, 25[8]: 0,1,3,5,7,9,11,12, 26[8]: 0,2,3,7,8,10,12,13, 27[8]: 0,1,3,4,9,10,12,13, 28[8]: 0,2,3,7,8,12,13,15, 29[9]: 0,1,3,5,7,9,11,13,14, 30[9]: 0,2,3,7,8,10,12,14,15, 31[9]: 0,1,3,4,9,10,12,14,15, 32[9]: 0,2,3,7,8,12,13,15,16, a(5)=13 because we can obtain at most a total of 13 consecutive integers from a set of 5 integers by summing any two integers in the set or doubling any one; from the 5-integer set {1,2,4,6,7}, we can obtain all 13 integers in the interval [2..14] as follows: 2=1+1, 3=1+2, 4=2+2, 5=1+4, 6=2+4, 7=1+6, 8=2+6, 9=2+7, 10=4+6, 11=4+7, 12=6+6, 13=6+7, 14=7+7. a(16)=90 because we can obtain at most a total of 90 consecutive integers from a set of 16 integers by summing any two integers in the set or doubling any one: from the 16-integer set {1,2,4,5,8,9,10,17,18,22,25,36,47,58,69,80}, we can obtain all 90 integers in the interval [2..91]. - _Jon E. Schoenfield_, Jul 16 2017
Links
- S. Gunturk and M. B. Nathanson, A new upper bound for finite additive bases, Acta Arithmetica, Vol. 124, No. 3 (2006) 235-255.
- Jürgen Herzog, Shinya Kumashiro, and Dumitru I. Stamate, The tiny trace ideals of the canonical modules in Cohen-Macaulay rings of dimension one, arXiv:2106.09404 [math.AC], 2021. See p. 9.
- Jürgen Herzog, Shinya Kumashiro, and Dumitru I. Stamate, The far-flung Gorenstein property for numerical semigroups, Extended abstract for IMNS 2024. See p. 3.
- Kagawa, VBA program
- H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937) 1-30. DOI
- W. D. Smith, More information
Formula
a(n) = A001212(n-1)+1 (conjecture). - R. J. Mathar, Oct 08 2006. Comment from Martin Fuller, Mar 18 2009: I agree with this conjecture.
lim inf a(n) / n^2 > 0.2857 lim sup a(n) / n^2 < 0.4789 - Charles R Greathouse IV, Aug 11 2007
Extensions
More terms (from Smith's web site) from R. J. Mathar, Oct 08 2006
Entry revised by N. J. A. Sloane, Aug 06 2017
a(13)-a(25) from Herzog et al. added by Stefano Spezia, Jul 05 2024
Comments