cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123515 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 231 exactly once (n>=4, 2<=k<=n-2).

Original entry on oeis.org

1, 0, 2, 2, 0, 3, 0, 8, 0, 4, 5, 0, 18, 0, 5, 0, 26, 0, 32, 0, 6, 12, 0, 75, 0, 50, 0, 7, 0, 76, 0, 164, 0, 72, 0, 8, 28, 0, 264, 0, 305, 0, 98, 0, 9, 0, 208, 0, 680, 0, 510, 0, 128, 0, 10, 64, 0, 840, 0, 1460, 0, 791, 0, 162, 0, 11, 0, 544, 0, 2480, 0, 2772, 0, 1160, 0, 200, 0, 12
Offset: 4

Views

Author

Emeric Deutsch, Oct 13 2006

Keywords

Comments

Also the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 312 exactly once (n>=4, 2<=k<=n-2). Example: T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 312: 523, 524 and 534).

Examples

			T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 231: 231, 241 and 341).
Triangle starts:
   1;
   0,   2;
   2,   0,   3;
   0,   8,   0,    4;
   5,   0,  18,    0,    5;
   0,  26,   0,   32,    0,    6;
  12,   0,  75,    0,   50,    0,   7;
   0,  76,   0,  164,    0,   72,   0,    8;
  28,   0, 264,    0,  305,    0,  98,    0,   9;
   0, 208,   0,  680,    0,  510,   0,  128,   0,  10;
  64,   0, 840,    0, 1460,    0, 791,    0, 162,   0, 11;
   0, 544,   0, 2480,    0, 2772,   0, 1160,   0, 200,  0, 12;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n>=4 and n+k mod 2 = 0 then (k-1)*2^((n-k-6)/2)*(binomial((n+k)/2-2,(n-k)/2-1)+2*binomial((n+k)/2-3, (n-k)/2-1)+binomial((n+k)/2-4,(n-k)/2-1)) else 0 fi end: for n from 4 to 16 do seq(T(n,k),k=2..n-2) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= ((1+(-1)^(n-k))/2)*2^((n-k-6)/2)*(k-1)* Sum[Binomial[2, j]*
      Binomial[(n+k-2*(j+2))/2, (n-k-2)/2], {j, 0, 2}];
    Table[T[n, k], {n,4,16}, {k,2,n-2}]//Flatten (* G. C. Greubel, Jan 16 2022 *)
  • Sage
    def A123515(n,k): return ((1+(-1)^(n+k))/2)*2^((n-k-6)/2)*(k-1)*sum( binomial(2, j)*binomial((n+k-2*j-2)/2, (n-k-2)/2) for j in (0..2) )
    flatten([[A123515(n,k) for k in (2..n-2)] for n in (4..16)]) # G. C. Greubel, Jan 16 2022

Formula

T(n, k) = 2^((n-k-6)/2)*(k-1)*( binomial((n+k)/2-2, (n-k)/2-1) + 2*binomial((n+k)/2-3, (n-k)/2-1) + binomial((n+k)/2-4, (n-k)/2-1) ) for n>=4, n+k even; T(n,k) = 0 otherwise.
From G. C. Greubel, Jan 16 2022: (Start)
Sum_{k=2..n-4} T(n, k) = A045623(n).
Sum_{k=2..floor(n/2)} T(n-k+2, k) = (1/9)*[n=4] + (1+(-1)^n)*n*3^((n-8)/2). (End)