cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123521 Triangle read by rows: T(n,k)=number of tilings of a 2 X n grid with k pieces of 1 X 2 tiles (in horizontal position) and 2n-2k pieces of 1 X 1 tiles (0<=k<=n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 4, 1, 6, 11, 6, 1, 1, 8, 22, 24, 9, 1, 10, 37, 62, 46, 12, 1, 1, 12, 56, 128, 148, 80, 16, 1, 14, 79, 230, 367, 314, 130, 20, 1, 1, 16, 106, 376, 771, 920, 610, 200, 25, 1, 18, 137, 574, 1444, 2232, 2083, 1106, 295, 30, 1, 1, 20, 172, 832, 2486, 4744, 5776, 4352, 1897, 420, 36
Offset: 0

Views

Author

Emeric Deutsch, Oct 16 2006

Keywords

Comments

Also the triangle of the coefficients of the squares of the Fibonacci polynomials. Row n has 1+2*floor(n/2) terms. Sum of terms in row n = (Fibonacci(n+1))^2 (A007598).
From Michael A. Allen, Jun 24 2020: (Start)
T(n,k) is the number of tilings of an n-board (a board with dimensions n X 1) using k (1/2, 1/2)-fence tiles and 2*(n-k) half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal). A (1/2, 1/2)-fence is a tile composed of two 1/2 X 1 pieces separated by a gap of width 1/2.
T(n,k) is the (n, (n-k))-th entry of the (1/(1-x^2), x/(1-x)^2) Riordan array.
(-1)^(n+k)*T(n,k) is the (n, (n-k))-th entry of the (1/(1-x^2), x/(1+x)^2) Riordan array (A158454). (End)

Examples

			T(3,1)=4 because the 1 X 2 tile can be placed in any of the four corners of the 2 X 3 grid.
The irregular triangle begins as:
  1;
  1;
  1,  2,   1;
  1,  4,   4;
  1,  6,  11,   6,    1;
  1,  8,  22,  24,    9;
  1, 10,  37,  62,   46,   12,    1;
  1, 12,  56, 128,  148,   80,   16;
  1, 14,  79, 230,  367,  314,  130,   20,    1;
  1, 16, 106, 376,  771,  920,  610,  200,   25;
  1, 18, 137, 574, 1444, 2232, 2083, 1106,  295,  30,  1;
  1, 20, 172, 832, 2486, 4744, 5776, 4352, 1897, 420, 36;
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.

Crossrefs

Other triangles related to tiling using fences: A059259, A157897, A335964.

Programs

  • Magma
    function A123521(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return 2*(n-1);
      else return A123521(n-2,k-2) + Binomial(2*n-k-1, 2*n-2*k-1);
      end if; return A123521;
    end function;
    [A123521(n,k): k in [0..2*Floor(n/2)], n in [0..14]]; // G. C. Greubel, Sep 01 2022
    
  • Maple
    G:=(1-t*z)/(1+t*z)/(1-z-2*t*z+t^2*z^2): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..2*floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    Block[{T}, T[0, 0]= T[1, 0]= 1; T[n_, k_]:= Which[k==0, 1, k==1, 2(n-1), True, T[n -2, k-2] + Binomial[2n-k-1, 2n-2k-1]]; Table[T[n, k], {n, 0, 14}, {k, 0, 2 Floor[n/2]}]] // Flatten (* Michael De Vlieger, Jun 24 2020 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A123521
        if (k==0): return 1
        elif (k==1): return 2*(n-1)
        else: return T(n-2, k-2) + binomial(2*n-k-1, 2*n-2*k-1)
    flatten([[T(n,k) for k in (0..2*(n//2))] for n in (0..12)]) # G. C. Greubel, Sep 01 2022

Formula

G.f.: G = (1-t*z)/((1+t*z)*(1-z-2*t*z+t^2*z^2)). G = 1/(1-g), where g = z+t^2*z^2+2*t*z^2/(1-t*z) is the g.f. of the indecomposable tilings, i.e., of those that cannot be split vertically into smaller tilings. The row generating polynomials are P(n) = (Fibonacci(n))^2. They satisfy the recurrence relation P(n) = (1+t)*(P(n-1) + t*P(n-2)) - t^3*P(n-3).
T(n,k) = T(n-2,k-2) + binomial(2*n-k-1, 2*n-2*k-1). - Michael A. Allen, Jun 24 2020