cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A059259 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-x-x*y-y^2) = 1/((1+y)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 0, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

This sequence provides the general solution to the recurrence a(n) = a(n-1) + k*(k+1)*a(n-2), a(0)=a(1)=1. The solution is (1, 1, k^2 + k + 1, 2*k^2 + 2*k + 1, ...) whose coefficients can be read from the rows of the triangle. The row sums of the triangle are given by the case k=1. These are the Jacobsthal numbers, A001045. Viewed as a square array, its first row is (1,0,1,0,1,...) with e.g.f. cosh(x), g.f. 1/(1-x^2) and subsequent rows are successive partial sums given by 1/((1-x)^n * (1-x^2)). - Paul Barry, Mar 17 2003
Conjecture: every second column of this triangle is identical to a column in the square array A071921. For example, column 4 of A059259 (1, 3, 9, 22, 46, ...) appears to be the same as column 3 of A071921; column 6 of A059259 (1, 4, 16, 50, 130, 296, ...) appears to be the same as column 4 of A071921; and in general column 2k of A059259 appears to be the same as column k+1 of A071921. Furthermore, since A225010 is a transposition of A071921 (ignoring the latter's top row and two leftmost columns), there appears to be a correspondence between column 2k of A059259 and row k of A225010. - Mathew Englander, May 17 2014
T(n,k) is the number of n-tilings of a (one-dimensional) board that use k (1,1)-fence tiles and n-k squares. A (1,1)-fence is a tile composed of two pieces of width 1 separated by a gap of width 1. - Michael A. Allen, Jun 25 2020
See the Edwards-Allen 2020 paper, page 14, for proof of Englander's conjecture. - Michael De Vlieger, Dec 10 2020

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,  1;
  1,  2,  2,   0;
  1,  3,  4,   2,   1;
  1,  4,  7,   6,   3,   0;
  1,  5, 11,  13,   9,   3,   1;
  1,  6, 16,  24,  22,  12,   4,   0;
  1,  7, 22,  40,  46,  34,  16,   4,  1;
  1,  8, 29,  62,  86,  80,  50,  20,  5,  0;
  1,  9, 37,  91, 148, 166, 130,  70, 25,  5, 1;
  1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0;
...
		

Crossrefs

See A059260 for an explicit formula.
Diagonals of this triangle are given by A006498.
Similar to the triangles A035317, A080242, A108561, A112555.

Programs

  • Maple
    read transforms; 1/(1-x-x*y-y^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    T[n_, 0]:= 1; T[n_, n_]:= (1+(-1)^n)/2; T[n_, k_]:= T[n, k] = T[n-1, k] + T[n-1, k-1]; Table[T[n, k], {n, 0, 10} , {k, 0, n}]//Flatten (* G. C. Greubel, Jan 03 2017 *)
  • PARI
    {T(n,k) = if(k==0, 1, if(k==n, (1+(-1)^n)/2, T(n-1,k) +T(n-1,k-1)) )};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 29 2019
  • Sage
    def A059259_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return (-1)^n
            if k==0: return 0
            return prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n)]
    for n in (1..12): print(A059259_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 1/(1 - x - x*y - y^2).
As a square array read by antidiagonals, this is T(n, k) = Sum_{i=0..n} (-1)^(n-i)*C(i+k, k). - Paul Barry, Jul 01 2003
T(2*n,n) = A026641(n). - Philippe Deléham, Mar 08 2007
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = T(2,2)=1, T(1,1)=0, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 24 2013
T(n,0) = 1, T(n,n) = (1+(-1)^n)/2, and T(n,k) = T(n-1,k) + T(n-1,k-1) for 0 < k < n. - Mathew Englander, May 24 2014
From Michael A. Allen, Jun 25 2020: (Start)
T(n,k) + T(n-1,k-1) = binomial(n,k) if n >= k > 0.
T(2*n-1,2*n-2) = T(2*n,2*n-1) = n, T(2*n,2*n-2) = n^2, T(2*n+1,2*n-1) = n*(n+1) for n > 0.
T(n,2) = binomial(n-2,2) + n - 1 for n > 1 and T(n,3) = binomial(n-3,3) + 2*binomial(n-2,2) for n > 2.
T(2*n-k,k) = A123521(n,k). (End)

A157897 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Mar 08 2009

Keywords

Comments

T(n, k) is the number of tilings of an n-board that use k (1/2, 1)-fences and n-k squares. A (1/2, 1)-fence is a tile composed of two pieces of width 1/2 separated by a gap of width 1. (Result proved in paper by K. Edwards - see the links section.) - Michael A. Allen, Apr 28 2019
T(n, k) is the (n, n-k)-th entry in the (1/(1-x^3), x*(1+x)/(1-x^3)) Riordan array. - Michael A. Allen, Mar 11 2021

Examples

			First few rows of the triangle are:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  0,  1;
  1,  3,  1,  2,  0;
  1,  4,  3,  3,  2,  0;
  1,  5,  6,  5,  6,  0,  1;
  1,  6, 10,  9, 12,  3,  3,  0;
  1,  7, 15, 16, 21, 12,  6,  3,  0;
  1,  8, 21, 27, 35, 30, 14, 12,  0,  1;
  ...
T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
		

Crossrefs

Cf. A000073 (row sums), A006498, A120415.
Other triangles related to tiling using fences: A059259, A123521, A335964.

Programs

  • Magma
    function T(n,k) // T = A157897
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return 1;
      else return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 01 2022
    
  • Mathematica
    T[n_,k_]:= If[nMichael A. Allen, Apr 28 2019 *)
  • SageMath
    def T(n,k): # T = A157897
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        else: return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3)
    flatten([[T(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Sep 01 2022

Formula

T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Sum_{k=0..n} T(n, k) = A000073(n+2). - Reinhard Zumkeller, Jun 25 2009
From G. C. Greubel, Sep 01 2022: (Start)
T(n, k) = T(n-1, k) + T(n-2, k-1) + T(n-3, k-3), with T(n, 0) = 1.
T(n, n) = A079978(n).
T(n, n-1) = A087508(n), n >= 1.
T(n, 1) = A001477(n-1).
T(n, 2) = A161680(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A120415(n). (End)

Extensions

Name clarified by Michael A. Allen, Apr 28 2019
Definition improved by Michael A. Allen, Mar 11 2021

A335964 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-3,k-1) + T(n-4,k-2) + delta(n,0)*delta(k,0), T(n,k<0) = T(n

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 2, 0, 0, 0, 1, 4, 4, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 1, 6, 11, 6, 1, 0, 0, 0, 0, 1, 7, 16, 13, 3, 0, 0, 0, 0, 0, 1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0, 1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0
Offset: 0

Author

Michael A. Allen, Jul 01 2020

Keywords

Comments

T(n,k) is the number of tilings of an n-board (a board with dimensions n X 1) using k (1,1)-fence tiles and n-2k square tiles. A (w,g)-fence tile is composed of two tiles of width w separated by a gap of width g.
Sum of n-th row = A006498(n).
T(2*j+r,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1 where f(n,x) is one form of a Fibonacci polynomial defined by f(n+1,x) = f(n,x) + x*f(n-1,x) where f(0,x)=1 and f(n<0,x)=0. - Michael A. Allen, Oct 02 2021

Examples

			Triangle begins:
  1;
  1,  0;
  1,  0,  0;
  1,  1,  0,  0;
  1,  2,  1,  0,  0;
  1,  3,  2,  0,  0,  0;
  1,  4,  4,  0,  0,  0,  0;
  1,  5,  7,  2,  0,  0,  0,  0;
  1,  6, 11,  6,  1,  0,  0,  0,  0;
  1,  7, 16, 13,  3,  0,  0,  0,  0,  0;
  1,  8, 22, 24,  9,  0,  0,  0,  0,  0,  0;
  1,  9, 29, 40, 22,  3,  0,  0,  0,  0,  0,  0;
  ...
		

Crossrefs

Other triangles related to tiling using fences: A059259, A123521, A157897, A158909.
Cf. A006498 (row sums), A011973, A348445.

Programs

  • Mathematica
    T[n_,k_]:=If[n
    				
  • PARI
    TT(n,k) = if (nA059259
    T(n,k) = TT(n-k,k);
    \\ matrix(7,7,n,k, T(n-1,k-1)) \\ Michel Marcus, Jul 18 2020

Formula

T(n,k) = A059259(n-k,k).
From Michael A. Allen, Oct 02 2021: (Start)
G.f.: 1/((1 + x^2*y)(1 - x - x^2*y)) in the sense that T(n,k) is the coefficient of x^n*y^k in the expansion of the g.f.
T(n,0) = 1.
T(n,1) = n-2 for n>1.
T(n,2) = binomial(n-4,2) + n - 3 for n>3.
T(n,3) = binomial(n-6,3) + 2*binomial(n-5,2) for n>5.
T(4*m-3,2*m-2) = T(4*m-1,2*m-1) = m for m>0.
T(2*n+1,n-k) = A158909(n,k). (End)
T(n,k) = A348445(n-2,k) for n>1.

A350110 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-1) + T(n-3,k-2) + T(n-3,k-3) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 0, 1, 3, 5, 4, 0, 0, 1, 4, 8, 8, 4, 2, 1, 1, 5, 12, 16, 13, 9, 3, 0, 1, 6, 17, 28, 30, 22, 9, 0, 0, 1, 7, 23, 45, 58, 51, 27, 9, 3, 1, 1, 8, 30, 68, 103, 108, 78, 40, 18, 4, 0, 1, 9, 38, 98, 171, 211, 187, 123, 58, 16, 0, 0
Offset: 0

Author

Michael A. Allen, Dec 21 2021

Keywords

Comments

This is the m=3 member in the sequence of triangles A007318, A059259, A350110, A350111, A350112 which give the number of tilings of an (n+k) X 1 board using k (1,m-1)-fences and n-k unit square tiles. A (1,g)-fence is composed of two unit square tiles separated by a gap of width g.
It is also the m=3, t=2 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g. - Michael A. Allen, Dec 27 2021
T(3*j+r-k,k) is the coefficient of x^k in (f(j,x))^(3-r)*(f(j+1,x))^r for r=0,1,2 where f(n,x) is one form of a Fibonacci polynomial defined by f(n+1,x)=f(n,x)+x*f(n-1,x) where f(0,x)=1 and f(n<0,x)=0.
T(n+3-k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 3.
Sum of (n+3)-th antidiagonal (counting initial 1 as the 0th) is A006500(n).

Examples

			Triangle begins:
   1;
   1,   0;
   1,   0,   0;
   1,   1,   1,   1;
   1,   2,   3,   2,   0;
   1,   3,   5,   4,   0,   0;
   1,   4,   8,   8,   4,   2,   1;
   1,   5,  12,  16,  13,   9,   3,   0;
   1,   6,  17,  28,  30,  22,   9,   0,   0;
   1,   7,  23,  45,  58,  51,  27,   9,   3,   1;
   1,   8,  30,  68, 103, 108,  78,  40,  18,   4,   0;
   1,   9,  38,  98, 171, 211, 187, 123,  58,  16,   0,   0;
   1,  10,  47, 136, 269, 382, 399, 310, 176,  64,  16,   4,   1;
		

Crossrefs

Other members of the two-parameter family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354667 (m=2,t=5), A354668 (m=3,t=3).
Other triangles related to tiling using fences: A123521, A157897, A335964.

Programs

  • Mathematica
    T[n_, k_]:=If[k<0 || n
    				

Formula

T(n,0) = 1.
T(n,n) = delta(n mod 3,0).
T(n,1) = n-2 for n>1.
T(3*j-r,3*j-p) = 0 for j>0, p=1,2, and r=1,...,p.
T(3*(j-1)+p,3*(j-1)) = T(3*j,3*j-p) = j^p for j>0 and p=0,1,2,3.
T(3*j+1,3*j-1) = 3*j(j+1)/2 for j>0.
T(3*j+2,3*j-2) = 3*(C(j+2,4) + C(j+1,2)^2) for j>1.
G.f. of row sums: (1-x)/((1-2*x)*(1+x^2-x^3)).
G.f. of antidiagonal sums: (1-x^2)/((1-x-x^2)*(1+x^3-x^6)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=2*k+1 if k>=0.

A350111 Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,3)-fences and n-k squares.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 2, 0, 1, 3, 6, 7, 4, 0, 0, 1, 4, 9, 12, 8, 0, 0, 0, 1, 5, 13, 20, 16, 8, 4, 2, 1, 1, 6, 18, 32, 36, 28, 19, 12, 3, 0, 1, 7, 24, 50, 69, 69, 58, 31, 9, 0, 0, 1, 8, 31, 74, 120, 144, 127, 78, 27, 0, 0, 0
Offset: 0

Author

Michael A. Allen, Dec 22 2021

Keywords

Comments

This is the m=4 member in the sequence of triangles A007318, A059259, A350110, A350111, A350112 which give the number of tilings of an (n+k) X 1 board using k (1,m-1)-fences and n-k unit square tiles. A (1,g)-fence is composed of two unit square tiles separated by a gap of width g.
It is also the m=4, t=2 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(4*j+r-k,k) is the coefficient of x^k in (f(j,x))^(4-r)*(f(j+1,x))^r for r=0,1,2,3 where f(n,x) is one form of a Fibonacci polynomial defined by f(n+1,x)=f(n,x)+x*f(n-1,x) where f(0,x)=1 and f(n<0,x)=0.
T(n+4-k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 4.
Sum of (n+3)-th antidiagonal (counting initial 1 as the 0th) is A031923(n).

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   0;
  1,   0,   0,   0;
  1,   1,   1,   1,   1;
  1,   2,   3,   4,   2,   0;
  1,   3,   6,   7,   4,   0,   0;
  1,   4,   9,  12,   8,   0,   0,   0;
  1,   5,  13,  20,  16,   8,   4,   2,   1;
  1,   6,  18,  32,  36,  28,  19,  12,   3,   0;
  1,   7,  24,  50,  69,  69,  58,  31,   9,   0,   0;
  1,   8,  31,  74, 120, 144, 127,  78,  27,   0,   0,   0;
  1,   9,  39, 105, 195, 264, 265, 189,  81,  27,   9,   3,   1;
  1,  10,  48, 144, 300, 458, 522, 432, 270, 132,  58,  24,   4,   0;
		

Crossrefs

Sums of antidiagonals: A031923
Other members of the two-parameter family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350112 (m=5,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354667 (m=2,t=5), A354668 (m=3,t=3).
Other triangles related to tiling using fences: A123521, A157897, A335964.

Programs

  • Mathematica
    f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
    T[n_, k_]:=Module[{j=Floor[(n+k)/4],r=Mod[n+k,4]},
      Coefficient[f[j]^(4-r)*f[j+1]^r,x,k]];
    Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]
    (* or *)
    T[n_,k_]:=If[k<0 || n
    				

Formula

T(n,k) = T(n-1,k) + T(n-2,k-1) - T(n-3,k-1) + T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-3) + 2*T(n-4,k-4) + T(n-5,k-2) + 2*T(n-5,k-3) - T(n-5,k-4) - T(n-6,k-3)-T(n-6,k-5) - T(n-7,k-4)-T(n-7,k-5) - T(n-7,k-6) - T(n-8,k-7)-T(n-8,k-8) + delta(n,0)*delta(k,0) - delta(n,2)*delta(k,1) - delta(n,3)*delta(k,2) - delta(n,4)*delta(k,4) with T(n
T(n,0) = 1.
T(n,n) = delta(n mod 4,0).
T(n,1) = n-3 for n>2.
T(4*j-r,4*j-p) = 0 for j>0, p=1,2,3, and r=1,...,p.
T(4*(j-1)+p,4*(j-1)) = T(4*j,4*j-p) = j^p for j>0 and p=0,1,2,3,4.
T(4*j+1,4*j-1) = 4*j(j+1)/2 for j>0.
T(4*j+2,4*j-2) = 4*C(j+2,4) + 6*C(j+1,2)^2 for j>1.
G.f. of row sums: (1-x-x^3)/((1-2*x)*(1-x^2)*(1+2*x^2+x^3+x^4)).
G.f. of antidiagonal sums: (1-x^2-x^3+x^4-x^6)/((1-x-x^2)*(1-x^4)*(1+3*x^4+x^8)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=3*k+1 if k>=0.

A350112 Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,4)-fences and n-k squares.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 2, 0, 1, 3, 6, 10, 9, 4, 0, 0, 1, 4, 10, 16, 16, 8, 0, 0, 0, 1, 5, 14, 25, 28, 16, 0, 0, 0, 0, 1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1, 1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0, 1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0
Offset: 0

Author

Michael A. Allen, Dec 22 2021

Keywords

Comments

This is the m=5 member in the sequence of triangles A007318, A059259, A350110, A350111, A350112 which give the number of tilings of an (n+k) X 1 board using k (1,m-1)-fences and n-k unit square tiles. A (1,g)-fence is composed of two unit square tiles separated by a gap of width g.
It is also the m=5, t=2 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(5*j+r-k,k) is the coefficient of x^k in (f(j,x))^(5-r)*(f(j+1,x))^r for r=0,1,2,3,4 where f(n,x) is one form of a Fibonacci polynomial defined by f(n+1,x)=f(n,x)+x*f(n-1,x) where f(0,x)=1 and f(n<0,x)=0.
T(n+5-k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 5.
Sum of (5j+r)-th antidiagonal (counting initial 1 as the 0th) is f(j)^(5-r)*f(j+1)^r where j=0,1,..., r=0,1,2,3,4, and f(n) is the Fibonacci number A000045(n+1).

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   0;
  1,   0,   0,   0;
  1,   0,   0,   0,   0;
  1,   1,   1,   1,   1,   1;
  1,   2,   3,   4,   5,   2,   0;
  1,   3,   6,  10,   9,   4,   0,   0;
  1,   4,  10,  16,  16,   8,   0,   0,   0;
  1,   5,  14,  25,  28,  16,   0,   0,   0,   0;
  1,   6,  19,  38,  48,  32,  16,   8,   4,   2,   1;
  1,   7,  25,  56,  80,  80,  60,  40,  25,  15,   3,   0;
  1,   8,  32,  80, 136, 166, 157, 128,  95,  40,   9,   0,   0;
  1,   9,  40, 112, 217, 309, 346, 330, 223, 105,  27,   0,   0,   0;
		

Crossrefs

Other members of the two-parameter family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354667 (m=2,t=5), A354668 (m=3,t=3).
Other triangles related to tiling using fences: A123521, A157897, A335964.

Programs

  • Mathematica
    f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
    T[n_, k_]:=Module[{j=Floor[(n+k)/5], r=Mod[n+k,5]},
      Coefficient[f[j]^(5-r)*f[j+1]^r,x,k]];
    Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]

Formula

T(n,0) = 1.
T(n,n) = delta(n mod 5,0).
T(n,1) = n-4 for n>3.
T(5*j-r,5*j-p) = 0 for j>0, p=1,2,3,4, and r=1,...,p.
T(5*(j-1)+p,5*(j-1)) = T(5*j,5*j-p) = j^p for j>0 and p=0,1,...,5.
T(5*j+1,5*j-1) = 5*j(j+1)/2 for j>0.
T(5*j+2,5*j-2) = 5*C(j+2,4) + 10*C(j+1,2)^2 for j>1.
T(n,k) = T(n-1,k) + T(n-1,k-1) for n >= 4*k+1 if k >= 0.

A354665 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-3) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1, 2, 4, 0, 1, 1, 3, 6, 3, 3, 0, 1, 4, 9, 8, 9, 0, 1, 1, 5, 13, 17, 18, 6, 4, 0, 1, 6, 18, 30, 36, 20, 16, 0, 1, 1, 7, 24, 48, 66, 55, 40, 10, 5, 0, 1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1, 1, 9, 39, 103, 186
Offset: 0

Author

Michael A. Allen, Jun 04 2022

Keywords

Comments

This is the m=2, t=3 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(2*j+r-2*k,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1, where f(n,x) is a Narayana's cows polynomial defined by f(n,x)=f(n-1,x)+x*f(n-3,x)+delta(n,0) where f(n<0,x)=0.
T(n+4-2*k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 2 or 4.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   1;
  1,   1,   2,   0;
  1,   2,   4,   0,   1;
  1,   3,   6,   3,   3,   0;
  1,   4,   9,   8,   9,   0,   1;
  1,   5,  13,  17,  18,   6,   4,   0;
  1,   6,  18,  30,  36,  20,  16,   0,   1;
  1,   7,  24,  48,  66,  55,  40,  10,   5,   0;
  1,   8,  31,  72, 114, 120, 100,  40,  25,   0,   1;
  1,   9,  39, 103, 186, 234, 221, 135,  75,  15,   6,   0;
...
		

Crossrefs

Row sums are A011782.
Sums over k of T(n-2*k,k) are A224809.
Other members of the family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354666 (m=2,t=4), A354667 (m=2,t=5), A354668 (m=3,t=3).
Other triangles related to tiling using combs: A059259, A123521, A157897, A335964.

Programs

  • Mathematica
    T[n_, k_]:=If[k<0 || n
    				

Formula

T(n,0) = 1.
T(n,n) = delta(n mod 2,0).
T(n,1) = n-2 for n>1.
T(2*j-r,2*j-1) = 0 for j>0, r=0,1.
T(2*(j-1)+p,2*(j-1)) = j^p for j>0 and p=0,1,2.
T(2*(j-1)+3,2*(j-1)) = j^2*(j+1)/2 for j>0.
T(2*j+p,2*j-p) = C(j+1,2)^p for j>0 and p=0,1,2.
G.f. of row sums: (1-x)/(1-2*x).
G.f. of sums of T(n-2*k,k) over k: (1-x^3)/((1-x-x^3)*(1+x^4-x^6)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=2*k+1 if k>=0.

A354666 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + 2*T(n-2,k-2) - T(n-3,k-1) - T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-2) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,2)*(delta(k,1) + delta(k,2)), T(n

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 4, 0, 1, 1, 2, 6, 0, 3, 0, 1, 3, 9, 4, 9, 0, 1, 1, 4, 12, 10, 18, 0, 4, 0, 1, 5, 16, 21, 36, 10, 16, 0, 1, 1, 6, 21, 36, 60, 30, 40, 0, 5, 0, 1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1, 1, 8, 34, 84, 158, 168
Offset: 0

Author

Michael A. Allen, Jun 04 2022

Keywords

Comments

This is the m=2, t=4 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(2*j+r-3*k,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1, where f(n,x) is a (1,4)-bonacci polynomial defined by f(n,x)=f(n-1,x)+x*f(n-4,x)+delta(n,0) where f(n<0,x)=0.
T(n+6-3*k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 2, 4, or 6.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   1;
  1,   0,   2,   0;
  1,   1,   4,   0,   1;
  1,   2,   6,   0,   3,   0;
  1,   3,   9,   4,   9,   0,   1;
  1,   4,  12,  10,  18,   0,   4,   0;
  1,   5,  16,  21,  36,  10,  16,   0,   1;
  1,   6,  21,  36,  60,  30,  40,   0,   5,   0;
  1,   7,  27,  57, 100,  81, 100,  20,  25,   0,   1;
  1,   8,  34,  84, 158, 168, 200,  70,  75,   0,   6,   0;
  1,   9,  42, 118, 243, 322, 400, 231, 225,  35,  36,   0,   1;
...
		

Crossrefs

Row sums are A099163.
Sums over k of T(n-3*k,k) are A224808.
Other members of the family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354665 (m=2,t=3), A354667 (m=2,t=5), A354668 (m=3,t=3).
Other triangles related to tiling using combs: A059259, A123521, A157897, A335964.

Programs

  • Mathematica
    T[n_,k_]:=If[k<0 || n
    				

Formula

T(n,0) = 1.
T(n,n) = delta(n mod 2,0).
T(n,1) = n-3 for n>2.
T(2*j-r,2*j-1) = 0 for j>0, r=-1,0,1.
T(2*(j-1)+p,2*(j-1)) = j^p for j>0 and p=0,1,2.
T(2*j+p,2*(j-1)) = j^2*((j+1)/2)^p for j>0 and p=1,2.
T(2*j+3,2*(j-1)) = (j*(j+1))^2*(j+2)/12 for j>0.
T(2*(j+p),2*j-p) = C(j+2,3)^p for j>0 and p=0,1,2.
G.f. of row sums: (1-2*x^2)/(1-x-3*x^2+2*x^3).
G.f. of sums of T(n-3*k,k) over k: (1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=3*k+1 if k>=0.

A354667 Triangle read by rows: T(n,k) is the number of tilings of an (n+4*k) X 1 board using k (1,1;5)-combs and n-k squares.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 4, 0, 1, 1, 1, 6, 0, 3, 0, 1, 2, 9, 0, 9, 0, 1, 1, 3, 12, 5, 18, 0, 4, 0, 1, 4, 16, 12, 36, 0, 16, 0, 1, 1, 5, 20, 25, 60, 15, 40, 0, 5, 0, 1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1, 1, 7, 31, 66, 150, 112, 200
Offset: 0

Author

Michael A. Allen, Jun 05 2022

Keywords

Comments

This is the m=2, t=5 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(2*j+r-4*k,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1, where f(n,x) is a (1,5)-bonacci polynomial defined by f(n,x)=f(n-1,x)+x*f(n-5,x)+delta(n,0) where f(n<0,x)=0.
T(n+8-4*k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 2, 4, 6, or 8.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   1;
  1,   0,   2,   0;
  1,   0,   4,   0,   1;
  1,   1,   6,   0,   3,   0;
  1,   2,   9,   0,   9,   0,   1;
  1,   3,  12,   5,  18,   0,   4,   0;
  1,   4,  16,  12,  36,   0,  16,   0,   1;
  1,   5,  20,  25,  60,  15,  40,   0,   5,   0;
  1,   6,  25,  42, 100,  42, 100,   0,  25,   0,   1;
  1,   7,  31,  66, 150, 112, 200,  35,  75,   0,   6,   0;
...
		

Crossrefs

Row sums are A005578.
Sums over k of T(n-4*k,k) are A224811.
Other members of the family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354668 (m=3,t=3).
Other triangles related to tiling using combs: A059259, A123521, A157897, A335964.

Programs

  • Mathematica
    T[n_,k_]:=If[k<0 || n
    				

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-2) - 2*T(n-3,k-3) - T(n-4,k-1) + T(n-4,k-2) + T(n-4,k-3) - T(n-4,k-4) + T(n-5,k-1) - 2*T(n-5,k-3) + T(n-5,k-5) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1) - delta(n,2)*delta(k,2) - delta(n,3)*(delta(k,1) - delta(k,3)) with T(n,k<0) = T(n
T(n,0) = 1.
T(n,n) = delta(n mod 2,0).
T(n,1) = n-4 for n>3.
T(2*j+r,2*j-1) = 0 for j>0, r=-1,0,1,2.
T(n,2*j) = C(n/2,j)^2 for j>0 and n even and 2*j <= n <= 2*j+8.
T(n,2*j) = C((n-1)/2,j)*C((n+1)/2,j) for j>0 and n odd and 2*j < n < 2*j+8.
T(2*j+3*p,2*j-p) = C(j+3,4)^p for j>0 and p=0,1,2.
G.f. of row sums: (1-x-x^2)/(1-2*x-x^2+2*x^3).
G.f. of sums of T(n-4*k,k) over k: (1-x^5-x^7-x^10+x^15)/(1-x-x^5+x^6-x^7+x^8-x^9-2*x^10+x^11-x^12+2*x^15-x^16+2*x^17+x^20-x^25).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=4*k+1 if k>=0.

A354668 Triangle read by rows: T(n,k) is the number of tilings of an (n+2*k) X 1 board using k (1,2;3)-combs and n-k squares.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 4, 0, 0, 1, 2, 5, 8, 0, 0, 1, 1, 3, 8, 12, 0, 3, 3, 0, 1, 4, 12, 18, 9, 12, 9, 0, 0, 1, 5, 16, 27, 25, 29, 27, 0, 0, 1, 1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0, 1, 7, 27, 62, 95, 135, 108, 36
Offset: 0

Author

Michael A. Allen, Jul 30 2022

Keywords

Comments

This is the m=3, t=3 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(3*j+r-2*k,k) is the coefficient of x^k in (f(j,x))^(3-r)*(f(j+1,x))^r for r=0,1, where f(n,x) is a Narayana's cows polynomial defined by f(n,x)=f(n-1,x)+x*f(n-3,x)+delta(n,0) where f(n<0,x)=0.
T(n+6-2*k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 3 or 6.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   0;
  1,   0,   0,   1;
  1,   0,   1,   2,   0;
  1,   1,   3,   4,   0,   0;
  1,   2,   5,   8,   0,   0,   1;
  1,   3,   8,  12,   0,   3,   3,   0;
  1,   4,  12,  18,   9,  12,   9,   0,   0;
  1,   5,  16,  27,  25,  29,  27,   0,   0,   1;
  1,   6,  21,  42,  51,  66,  54,   0,   6,   4,   0;
  1,   7,  27,  62,  95, 135, 108,  36,  30,  16,   0,   0;
...
		

Crossrefs

Sums over k of T(n-2*k,k) are A224810.
Other members of the family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354667 (m=2,t=5).
Other triangles related to tiling using combs: A059259, A123521, A157897, A335964.

Programs

  • Mathematica
    f[n_]:=If[n<0, 0, f[n-1]+x*f[n-3]+KroneckerDelta[n,0]]; T[n_, k_]:=Module[{j=Floor[(n+2*k)/3], r=Mod[n+2*k,3]}, Coefficient[f[j]^(3-r)*f[j+1]^r, x, k]]; Flatten@Table[T[n,k], {n, 0, 11}, {k, 0, n}]

Formula

T(n,0) = 1.
T(n,n) = delta(n mod 3,0).
T(n,1) = n-4 for n>3.
T(3*j-r,3*j-p) = 0 for j>0, p=1,2, and r=1-p,...,p.
T(n,2*j) = C(n/2,j)^2 for j>0 and n even and 2*j <= n <= 2*j+8.
T(n,2*j) = C((n-1)/2,j)*C((n+1)/2,j) for j>0 and n odd and 2*j < n < 2*j+8.
T(2*j+3*p,2*j-p) = C(j+3,4)^p for j>0 and p=0,1,2.
G.f. of sums of T(n-2*k,k) over k: (1+x^3-x^4-x^5+x^6-2*x^7-x^8-x^9-2*x^10-x^12-x^13-x^15)/((1-x)*(1+x+x^2)*(1-x-x^3)*(1+3*x^3+7*x^6+9*x^9+7*x^12+3*x^15+x^18)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=4*k+1 if k>=0.
Showing 1-10 of 12 results. Next