1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0
First few rows of the triangle are:
1;
1, 0;
1, 1, 0;
1, 2, 0, 1;
1, 3, 1, 2, 0;
1, 4, 3, 3, 2, 0;
1, 5, 6, 5, 6, 0, 1;
1, 6, 10, 9, 12, 3, 3, 0;
1, 7, 15, 16, 21, 12, 6, 3, 0;
1, 8, 21, 27, 35, 30, 14, 12, 0, 1;
...
T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
A335964
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-3,k-1) + T(n-4,k-2) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 2, 0, 0, 0, 1, 4, 4, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 1, 6, 11, 6, 1, 0, 0, 0, 0, 1, 7, 16, 13, 3, 0, 0, 0, 0, 0, 1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0, 1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 1, 0, 0;
1, 2, 1, 0, 0;
1, 3, 2, 0, 0, 0;
1, 4, 4, 0, 0, 0, 0;
1, 5, 7, 2, 0, 0, 0, 0;
1, 6, 11, 6, 1, 0, 0, 0, 0;
1, 7, 16, 13, 3, 0, 0, 0, 0, 0;
1, 8, 22, 24, 9, 0, 0, 0, 0, 0, 0;
1, 9, 29, 40, 22, 3, 0, 0, 0, 0, 0, 0;
...
- Kenneth Edwards and Michael A. Allen, New Combinatorial Interpretations of the Fibonacci Numbers Squared, Golden Rectangle Numbers, and Jacobsthal Numbers Using Two Types of Tile, arXiv:2009.04649 [math.CO], 2020.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
- John Konvalina, On the number of combinations without unit separation., Journal of Combinatorial Theory, Series A 31.2 (1981): 101-107. See Table I.
-
T[n_,k_]:=If[n
-
TT(n,k) = if (nA059259
T(n,k) = TT(n-k,k);
\\ matrix(7,7,n,k, T(n-1,k-1)) \\ Michel Marcus, Jul 18 2020
A350110
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-1) + T(n-3,k-2) + T(n-3,k-3) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 0, 1, 3, 5, 4, 0, 0, 1, 4, 8, 8, 4, 2, 1, 1, 5, 12, 16, 13, 9, 3, 0, 1, 6, 17, 28, 30, 22, 9, 0, 0, 1, 7, 23, 45, 58, 51, 27, 9, 3, 1, 1, 8, 30, 68, 103, 108, 78, 40, 18, 4, 0, 1, 9, 38, 98, 171, 211, 187, 123, 58, 16, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 1, 1, 1;
1, 2, 3, 2, 0;
1, 3, 5, 4, 0, 0;
1, 4, 8, 8, 4, 2, 1;
1, 5, 12, 16, 13, 9, 3, 0;
1, 6, 17, 28, 30, 22, 9, 0, 0;
1, 7, 23, 45, 58, 51, 27, 9, 3, 1;
1, 8, 30, 68, 103, 108, 78, 40, 18, 4, 0;
1, 9, 38, 98, 171, 211, 187, 123, 58, 16, 0, 0;
1, 10, 47, 136, 269, 382, 399, 310, 176, 64, 16, 4, 1;
Other members of the two-parameter family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A350111
Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,3)-fences and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 2, 0, 1, 3, 6, 7, 4, 0, 0, 1, 4, 9, 12, 8, 0, 0, 0, 1, 5, 13, 20, 16, 8, 4, 2, 1, 1, 6, 18, 32, 36, 28, 19, 12, 3, 0, 1, 7, 24, 50, 69, 69, 58, 31, 9, 0, 0, 1, 8, 31, 74, 120, 144, 127, 78, 27, 0, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 0;
1, 1, 1, 1, 1;
1, 2, 3, 4, 2, 0;
1, 3, 6, 7, 4, 0, 0;
1, 4, 9, 12, 8, 0, 0, 0;
1, 5, 13, 20, 16, 8, 4, 2, 1;
1, 6, 18, 32, 36, 28, 19, 12, 3, 0;
1, 7, 24, 50, 69, 69, 58, 31, 9, 0, 0;
1, 8, 31, 74, 120, 144, 127, 78, 27, 0, 0, 0;
1, 9, 39, 105, 195, 264, 265, 189, 81, 27, 9, 3, 1;
1, 10, 48, 144, 300, 458, 522, 432, 270, 132, 58, 24, 4, 0;
Other members of the two-parameter family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
-
f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
T[n_, k_]:=Module[{j=Floor[(n+k)/4],r=Mod[n+k,4]},
Coefficient[f[j]^(4-r)*f[j+1]^r,x,k]];
Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]
(* or *)
T[n_,k_]:=If[k<0 || n
A350112
Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,4)-fences and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 2, 0, 1, 3, 6, 10, 9, 4, 0, 0, 1, 4, 10, 16, 16, 8, 0, 0, 0, 1, 5, 14, 25, 28, 16, 0, 0, 0, 0, 1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1, 1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0, 1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 0;
1, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1;
1, 2, 3, 4, 5, 2, 0;
1, 3, 6, 10, 9, 4, 0, 0;
1, 4, 10, 16, 16, 8, 0, 0, 0;
1, 5, 14, 25, 28, 16, 0, 0, 0, 0;
1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1;
1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0;
1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0;
1, 9, 40, 112, 217, 309, 346, 330, 223, 105, 27, 0, 0, 0;
Other members of the two-parameter family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
-
f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
T[n_, k_]:=Module[{j=Floor[(n+k)/5], r=Mod[n+k,5]},
Coefficient[f[j]^(5-r)*f[j+1]^r,x,k]];
Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]
A354665
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-3) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1, 2, 4, 0, 1, 1, 3, 6, 3, 3, 0, 1, 4, 9, 8, 9, 0, 1, 1, 5, 13, 17, 18, 6, 4, 0, 1, 6, 18, 30, 36, 20, 16, 0, 1, 1, 7, 24, 48, 66, 55, 40, 10, 5, 0, 1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1, 1, 9, 39, 103, 186
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 1, 2, 0;
1, 2, 4, 0, 1;
1, 3, 6, 3, 3, 0;
1, 4, 9, 8, 9, 0, 1;
1, 5, 13, 17, 18, 6, 4, 0;
1, 6, 18, 30, 36, 20, 16, 0, 1;
1, 7, 24, 48, 66, 55, 40, 10, 5, 0;
1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1;
1, 9, 39, 103, 186, 234, 221, 135, 75, 15, 6, 0;
...
Sums over k of T(n-2*k,k) are
A224809.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A354666
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + 2*T(n-2,k-2) - T(n-3,k-1) - T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-2) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,2)*(delta(k,1) + delta(k,2)), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 4, 0, 1, 1, 2, 6, 0, 3, 0, 1, 3, 9, 4, 9, 0, 1, 1, 4, 12, 10, 18, 0, 4, 0, 1, 5, 16, 21, 36, 10, 16, 0, 1, 1, 6, 21, 36, 60, 30, 40, 0, 5, 0, 1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1, 1, 8, 34, 84, 158, 168
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 2, 0;
1, 1, 4, 0, 1;
1, 2, 6, 0, 3, 0;
1, 3, 9, 4, 9, 0, 1;
1, 4, 12, 10, 18, 0, 4, 0;
1, 5, 16, 21, 36, 10, 16, 0, 1;
1, 6, 21, 36, 60, 30, 40, 0, 5, 0;
1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1;
1, 8, 34, 84, 158, 168, 200, 70, 75, 0, 6, 0;
1, 9, 42, 118, 243, 322, 400, 231, 225, 35, 36, 0, 1;
...
Sums over k of T(n-3*k,k) are
A224808.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A354667
Triangle read by rows: T(n,k) is the number of tilings of an (n+4*k) X 1 board using k (1,1;5)-combs and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 4, 0, 1, 1, 1, 6, 0, 3, 0, 1, 2, 9, 0, 9, 0, 1, 1, 3, 12, 5, 18, 0, 4, 0, 1, 4, 16, 12, 36, 0, 16, 0, 1, 1, 5, 20, 25, 60, 15, 40, 0, 5, 0, 1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1, 1, 7, 31, 66, 150, 112, 200
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 2, 0;
1, 0, 4, 0, 1;
1, 1, 6, 0, 3, 0;
1, 2, 9, 0, 9, 0, 1;
1, 3, 12, 5, 18, 0, 4, 0;
1, 4, 16, 12, 36, 0, 16, 0, 1;
1, 5, 20, 25, 60, 15, 40, 0, 5, 0;
1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1;
1, 7, 31, 66, 150, 112, 200, 35, 75, 0, 6, 0;
...
Sums over k of T(n-4*k,k) are
A224811.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354668 (m=3,t=3).
A354668
Triangle read by rows: T(n,k) is the number of tilings of an (n+2*k) X 1 board using k (1,2;3)-combs and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 4, 0, 0, 1, 2, 5, 8, 0, 0, 1, 1, 3, 8, 12, 0, 3, 3, 0, 1, 4, 12, 18, 9, 12, 9, 0, 0, 1, 5, 16, 27, 25, 29, 27, 0, 0, 1, 1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0, 1, 7, 27, 62, 95, 135, 108, 36
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 1;
1, 0, 1, 2, 0;
1, 1, 3, 4, 0, 0;
1, 2, 5, 8, 0, 0, 1;
1, 3, 8, 12, 0, 3, 3, 0;
1, 4, 12, 18, 9, 12, 9, 0, 0;
1, 5, 16, 27, 25, 29, 27, 0, 0, 1;
1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0;
1, 7, 27, 62, 95, 135, 108, 36, 30, 16, 0, 0;
...
Sums over k of T(n-2*k,k) are
A224810.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5).
-
f[n_]:=If[n<0, 0, f[n-1]+x*f[n-3]+KroneckerDelta[n,0]]; T[n_, k_]:=Module[{j=Floor[(n+2*k)/3], r=Mod[n+2*k,3]}, Coefficient[f[j]^(3-r)*f[j+1]^r, x, k]]; Flatten@Table[T[n,k], {n, 0, 11}, {k, 0, n}]
Showing 1-10 of 12 results.
Next
Comments