1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0
First few rows of the triangle are:
1;
1, 0;
1, 1, 0;
1, 2, 0, 1;
1, 3, 1, 2, 0;
1, 4, 3, 3, 2, 0;
1, 5, 6, 5, 6, 0, 1;
1, 6, 10, 9, 12, 3, 3, 0;
1, 7, 15, 16, 21, 12, 6, 3, 0;
1, 8, 21, 27, 35, 30, 14, 12, 0, 1;
...
T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
A350110
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-1) + T(n-3,k-2) + T(n-3,k-3) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 0, 1, 3, 5, 4, 0, 0, 1, 4, 8, 8, 4, 2, 1, 1, 5, 12, 16, 13, 9, 3, 0, 1, 6, 17, 28, 30, 22, 9, 0, 0, 1, 7, 23, 45, 58, 51, 27, 9, 3, 1, 1, 8, 30, 68, 103, 108, 78, 40, 18, 4, 0, 1, 9, 38, 98, 171, 211, 187, 123, 58, 16, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 1, 1, 1;
1, 2, 3, 2, 0;
1, 3, 5, 4, 0, 0;
1, 4, 8, 8, 4, 2, 1;
1, 5, 12, 16, 13, 9, 3, 0;
1, 6, 17, 28, 30, 22, 9, 0, 0;
1, 7, 23, 45, 58, 51, 27, 9, 3, 1;
1, 8, 30, 68, 103, 108, 78, 40, 18, 4, 0;
1, 9, 38, 98, 171, 211, 187, 123, 58, 16, 0, 0;
1, 10, 47, 136, 269, 382, 399, 310, 176, 64, 16, 4, 1;
Other members of the two-parameter family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A350111
Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,3)-fences and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 2, 0, 1, 3, 6, 7, 4, 0, 0, 1, 4, 9, 12, 8, 0, 0, 0, 1, 5, 13, 20, 16, 8, 4, 2, 1, 1, 6, 18, 32, 36, 28, 19, 12, 3, 0, 1, 7, 24, 50, 69, 69, 58, 31, 9, 0, 0, 1, 8, 31, 74, 120, 144, 127, 78, 27, 0, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 0;
1, 1, 1, 1, 1;
1, 2, 3, 4, 2, 0;
1, 3, 6, 7, 4, 0, 0;
1, 4, 9, 12, 8, 0, 0, 0;
1, 5, 13, 20, 16, 8, 4, 2, 1;
1, 6, 18, 32, 36, 28, 19, 12, 3, 0;
1, 7, 24, 50, 69, 69, 58, 31, 9, 0, 0;
1, 8, 31, 74, 120, 144, 127, 78, 27, 0, 0, 0;
1, 9, 39, 105, 195, 264, 265, 189, 81, 27, 9, 3, 1;
1, 10, 48, 144, 300, 458, 522, 432, 270, 132, 58, 24, 4, 0;
Other members of the two-parameter family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
-
f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
T[n_, k_]:=Module[{j=Floor[(n+k)/4],r=Mod[n+k,4]},
Coefficient[f[j]^(4-r)*f[j+1]^r,x,k]];
Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]
(* or *)
T[n_,k_]:=If[k<0 || n
A350112
Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,4)-fences and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 2, 0, 1, 3, 6, 10, 9, 4, 0, 0, 1, 4, 10, 16, 16, 8, 0, 0, 0, 1, 5, 14, 25, 28, 16, 0, 0, 0, 0, 1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1, 1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0, 1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 0;
1, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1;
1, 2, 3, 4, 5, 2, 0;
1, 3, 6, 10, 9, 4, 0, 0;
1, 4, 10, 16, 16, 8, 0, 0, 0;
1, 5, 14, 25, 28, 16, 0, 0, 0, 0;
1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1;
1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0;
1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0;
1, 9, 40, 112, 217, 309, 346, 330, 223, 105, 27, 0, 0, 0;
Other members of the two-parameter family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
-
f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
T[n_, k_]:=Module[{j=Floor[(n+k)/5], r=Mod[n+k,5]},
Coefficient[f[j]^(5-r)*f[j+1]^r,x,k]];
Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]
A158909
Riordan array (1/((1-x)(1-x^2)), x/(1-x)^2). Triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 2, 7, 5, 1, 3, 13, 16, 7, 1, 3, 22, 40, 29, 9, 1, 4, 34, 86, 91, 46, 11, 1, 4, 50, 166, 239, 174, 67, 13, 1, 5, 70, 296, 553, 541, 297, 92, 15, 1, 5, 95, 496, 1163, 1461, 1068, 468, 121, 17, 1, 6, 125, 791, 2269, 3544, 3300, 1912, 695, 154, 19, 1
Offset: 0
From _Wolfdieter Lang_, Oct 22 2019: (Start)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
----------------------------------------------------
0: 1
1: 1 1
2: 2 3 1
3: 2 7 5 1
4: 3 13 16 7 1
5: 3 22 40 29 9 1
6: 4 34 86 91 46 11 1
7: 4 50 166 239 174 67 13 1
8: 5 70 296 553 541 297 92 15 1
9: 5 95 496 1163 1461 1068 468 121 17 1
10: 6 125 791 2269 3544 3300 1912 695 154 19 1
...
----------------------------------------------------------------------------
Recurrence: T(5, 2) = 16 + 13 + 5 + 7 - 1 = 40, and T(5, 0) = 3 + 2 - 2 = 3. [using _Philippe Deléham_'s Nov 12 2013 recurrence]
Recurrence from A-sequence [1, 2, -1, 2, -5, ...]: T(5, 2) = 1*13 + 2*16 - 1*7 + 2*1 = 40.
Recurrence from Z-sequence [1, 1, -3, 9, -28, ...]: T(5, 0) = 1*3 + 1*13 - 3*16 + 9*7 - 28*1 = 3. (End)
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, JIS 24 (2021) 21.3.8.
-
[(&+[(-1)^(j+n-k)*Binomial(2*k+j+1, j): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2021
-
T := (n,k) -> binomial(k+n+2, n-k+1)*hypergeom([1, k+n+3], [n-k+2], -1) + (-1)^(n-k)/4^(k+1):
seq(seq(simplify(T(n,k)), k=0..n), n=0..9); # Peter Luschny, Oct 31 2019
-
Table[Sum[(-1)^(j+n-k)*Binomial[j+2*k+1, j], {j,0,n-k}], {n,0,12}, {k,0,n}] // Flatten (* G. C. Greubel, Mar 18 2021 *)
-
flatten([[sum((-1)^(j+n-k)*binomial(j+2*k+1, j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2021
A354665
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-3) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1, 2, 4, 0, 1, 1, 3, 6, 3, 3, 0, 1, 4, 9, 8, 9, 0, 1, 1, 5, 13, 17, 18, 6, 4, 0, 1, 6, 18, 30, 36, 20, 16, 0, 1, 1, 7, 24, 48, 66, 55, 40, 10, 5, 0, 1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1, 1, 9, 39, 103, 186
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 1, 2, 0;
1, 2, 4, 0, 1;
1, 3, 6, 3, 3, 0;
1, 4, 9, 8, 9, 0, 1;
1, 5, 13, 17, 18, 6, 4, 0;
1, 6, 18, 30, 36, 20, 16, 0, 1;
1, 7, 24, 48, 66, 55, 40, 10, 5, 0;
1, 8, 31, 72, 114, 120, 100, 40, 25, 0, 1;
1, 9, 39, 103, 186, 234, 221, 135, 75, 15, 6, 0;
...
Sums over k of T(n-2*k,k) are
A224809.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354666 (m=2,t=4),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A354666
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + 2*T(n-2,k-2) - T(n-3,k-1) - T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-2) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,2)*(delta(k,1) + delta(k,2)), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 4, 0, 1, 1, 2, 6, 0, 3, 0, 1, 3, 9, 4, 9, 0, 1, 1, 4, 12, 10, 18, 0, 4, 0, 1, 5, 16, 21, 36, 10, 16, 0, 1, 1, 6, 21, 36, 60, 30, 40, 0, 5, 0, 1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1, 1, 8, 34, 84, 158, 168
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 2, 0;
1, 1, 4, 0, 1;
1, 2, 6, 0, 3, 0;
1, 3, 9, 4, 9, 0, 1;
1, 4, 12, 10, 18, 0, 4, 0;
1, 5, 16, 21, 36, 10, 16, 0, 1;
1, 6, 21, 36, 60, 30, 40, 0, 5, 0;
1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1;
1, 8, 34, 84, 158, 168, 200, 70, 75, 0, 6, 0;
1, 9, 42, 118, 243, 322, 400, 231, 225, 35, 36, 0, 1;
...
Sums over k of T(n-3*k,k) are
A224808.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A354667
Triangle read by rows: T(n,k) is the number of tilings of an (n+4*k) X 1 board using k (1,1;5)-combs and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 4, 0, 1, 1, 1, 6, 0, 3, 0, 1, 2, 9, 0, 9, 0, 1, 1, 3, 12, 5, 18, 0, 4, 0, 1, 4, 16, 12, 36, 0, 16, 0, 1, 1, 5, 20, 25, 60, 15, 40, 0, 5, 0, 1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1, 1, 7, 31, 66, 150, 112, 200
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 2, 0;
1, 0, 4, 0, 1;
1, 1, 6, 0, 3, 0;
1, 2, 9, 0, 9, 0, 1;
1, 3, 12, 5, 18, 0, 4, 0;
1, 4, 16, 12, 36, 0, 16, 0, 1;
1, 5, 20, 25, 60, 15, 40, 0, 5, 0;
1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1;
1, 7, 31, 66, 150, 112, 200, 35, 75, 0, 6, 0;
...
Sums over k of T(n-4*k,k) are
A224811.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354668 (m=3,t=3).
A354668
Triangle read by rows: T(n,k) is the number of tilings of an (n+2*k) X 1 board using k (1,2;3)-combs and n-k squares.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 4, 0, 0, 1, 2, 5, 8, 0, 0, 1, 1, 3, 8, 12, 0, 3, 3, 0, 1, 4, 12, 18, 9, 12, 9, 0, 0, 1, 5, 16, 27, 25, 29, 27, 0, 0, 1, 1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0, 1, 7, 27, 62, 95, 135, 108, 36
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 0, 0, 1;
1, 0, 1, 2, 0;
1, 1, 3, 4, 0, 0;
1, 2, 5, 8, 0, 0, 1;
1, 3, 8, 12, 0, 3, 3, 0;
1, 4, 12, 18, 9, 12, 9, 0, 0;
1, 5, 16, 27, 25, 29, 27, 0, 0, 1;
1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0;
1, 7, 27, 62, 95, 135, 108, 36, 30, 16, 0, 0;
...
Sums over k of T(n-2*k,k) are
A224810.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354666 (m=2,t=4),
A354667 (m=2,t=5).
-
f[n_]:=If[n<0, 0, f[n-1]+x*f[n-3]+KroneckerDelta[n,0]]; T[n_, k_]:=Module[{j=Floor[(n+2*k)/3], r=Mod[n+2*k,3]}, Coefficient[f[j]^(3-r)*f[j+1]^r, x, k]]; Flatten@Table[T[n,k], {n, 0, 11}, {k, 0, n}]
Showing 1-10 of 11 results.
Next
Comments