cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123527 Triangular array T(n,k) giving number of connected graphs with n labeled nodes and k edges (n >= 1, n-1 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 3, 1, 16, 15, 6, 1, 125, 222, 205, 120, 45, 10, 1, 1296, 3660, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 16807, 68295, 156555, 258125, 331506, 343140, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1, 262144, 1436568
Offset: 1

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

Examples

			Triangle begins:
n = 1
  k = 0: 1
  ****** total(1) = 1
n = 2
  k = 1: 1
  ****** total(2) = 1
n = 3
  k = 2: 3
  k = 3: 1
  ****** total(3) = 4
n = 4
  k = 3: 16
  k = 4: 15
  k = 5:  6
  k = 6:  1
  ****** total(4) = 38
n = 5
  k = 4: 125
  k = 5: 222
  k = 6: 205
  k = 7: 120
  k = 8:  45
  k = 9:  10
  k = 10:  1
  ****** total(5) = 728
		

References

  • Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519). - From N. J. A. Sloane, Apr 06 2012
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

See A062734 for another version with more information. Row sums give A001187.

Programs

  • Mathematica
    nn = 8; a = Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 0, nn}]; f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Log[a], {x, 0, nn}], {x, y}],1]]] (* Geoffrey Critzer, Dec 08 2011 *)
    T[ n_, k_] := If[ n < 1, 0, Coefficient[ n! SeriesCoefficient[ Log[ Sum[ (1 + y)^Binomial[m, 2] x^m/m!, {m, 0, n}]], {x, 0, n}], y, n - 1 + k]]; (* Michael Somos, Aug 12 2017 *)

Formula

For k >= C(n-1, 2) + 1 (not smaller!), T(n,k) = C(C(n,2),k) where C(n,k) is the binomial coefficient. See A084546. - Geoffrey Critzer, Dec 08 2011