cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123534 Triangular array T(n,k) giving number of 2-connected graphs with n labeled nodes and k edges (n >= 3, n <= k <= n(n-1)/2).

Original entry on oeis.org

1, 3, 6, 1, 12, 70, 100, 45, 10, 1, 60, 720, 2445, 3535, 2697, 1335, 455, 105, 15, 1, 360, 7560, 46830, 133581, 216951, 232820, 183540, 111765, 53627, 20307, 5985, 1330, 210, 21, 1, 2520, 84000, 835800, 3940440, 10908688, 20317528
Offset: 3

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

Examples

			Triangle begins (n >= 3, k >= n):
  n
  3 | 1;
  4 | 3, 6, 1;
  5 | 12, 70, 100, 45, 10, 1;
  6 | 60, 720, 2445, 3535, 2697, 1335, 455, 105, 15, 1;
  ...
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

Row sums give A013922.

Programs

  • Mathematica
    row[n_] := row[n] = Module[{s}, s = (n-1)!*Log[x/InverseSeries[#, x]& @ (x*D[#, x]& @ Log[Sum[(1+y)^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1) ])]; CoefficientList[Coefficient[s, x, n-1]/y^n, y]];
    Table[row[n], {n, 3, 15}] // Flatten (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
  • PARI
    row(n)={Vecrev((n-1)!*polcoef(log(x/serreverse(x*deriv(log(sum(k=0, n, (1 + y)^binomial(k, 2) * x^k / k!) + O(x*x^n))))), n-1)/y^n)}
    { for(n=3, 7, print(row(n))) } \\ Andrew Howroyd, Nov 30 2018