cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A013922 Number of labeled connected graphs with n nodes and 0 cutpoints (blocks or nonseparable graphs).

Original entry on oeis.org

0, 1, 1, 10, 238, 11368, 1014888, 166537616, 50680432112, 29107809374336, 32093527159296128, 68846607723033232640, 290126947098532533378816, 2417684612523425600721132544, 40013522702538780900803893881856
Offset: 1

Views

Author

Stanley Selkow (sms(AT)owl.WPI.EDU)

Keywords

Comments

Or, number of labeled 2-connected graphs with n nodes.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p.402.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 9.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20(b), g(n).

Crossrefs

Row sums of triangle A123534.

Programs

  • Mathematica
    seq[n_] := CoefficientList[Log[x/InverseSeries[x*D[Log[Sum[2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^n], x]]], x]*Range[0, n-2]!;
    seq[16] (* Jean-François Alcover, Aug 19 2019, after Andrew Howroyd *)
  • PARI
    seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))))), -n)} \\ Andrew Howroyd, Sep 26 2018

Formula

Harary and Palmer give e.g.f. in Eqn. (1.3.3) on page 10.

A339070 Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) graphs with n edges and k nodes (n >= 1, 2 <= k <= n + 1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 3, 3, 1, 0, 0, 0, 0, 2, 9, 4, 1, 0, 0, 0, 0, 1, 14, 20, 6, 1, 0, 0, 0, 0, 1, 12, 50, 40, 7, 1, 0, 0, 0, 0, 0, 8, 82, 161, 70, 9, 1, 0, 0, 0, 0, 0, 5, 94, 429, 433, 121, 11, 1, 0, 0, 0, 0, 0, 2, 81, 780, 1729, 1034, 189, 13, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Nov 23 2020

Keywords

Examples

			Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
  1;
  0, 0;
  0, 1, 0;
  0, 0, 1, 0;
  0, 0, 1, 1,  0;
  0, 0, 1, 2,  1,  0;
  0, 0, 0, 3,  3,  1,   0;
  0, 0, 0, 2,  9,  4,   1,   0;
  0, 0, 0, 1, 14, 20,   6,   1,   0;
  0, 0, 0, 1, 12, 50,  40,   7,   1,  0;
  0, 0, 0, 0,  8, 82, 161,  70,   9,  1, 0;
  0, 0, 0, 0,  5, 94, 429, 433, 121, 11, 1, 0;
  ...
		

Crossrefs

Row sums are A010355.
Column sums are A002218.
Cf. A054923, A123534, A253186, A339071 (transpose), A339160.

Formula

T(n, n) = 1 for n >= 3.
T(n, n-1) = A253186(n-3) for n >= 3.

Extensions

First row and column removed by Andrew Howroyd, Dec 05 2020

A339071 Triangle read by rows: T(n,k) is the number of unlabeled simple nonseparable (or 2-connected) graphs with n nodes and k edges (n >= 1, n-1 <= k <= n*(n-1)/2).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 3, 2, 1, 1, 0, 1, 3, 9, 14, 12, 8, 5, 2, 1, 1, 0, 1, 4, 20, 50, 82, 94, 81, 59, 38, 20, 10, 5, 2, 1, 1, 0, 1, 6, 40, 161, 429, 780, 1076, 1197, 1114, 885, 622, 386, 215, 112, 55, 24, 11, 5, 2, 1, 1, 0, 1, 7, 70, 433, 1729, 4796
Offset: 1

Views

Author

Andrew Howroyd, Nov 23 2020

Keywords

Examples

			Triangle T(n,k) begins:
======================================================
n/k | 0  1  2  3  4  5  6  7  8   9  10 11 12 13 14 15
----+-------------------------------------------------
  1 | 0;
  2 |    1;
  3 |       0, 1;
  4 |          0, 1, 1, 1;
  5 |             0, 1, 2, 3, 2,  1,  1;
  6 |                0, 1, 3, 9, 14, 12, 8, 5, 2, 1, 1;
  ...
		

Crossrefs

Row sums are A002218.
Column sums are A010355.
Cf. A054923, A054924, A123534, A339070 (transpose), A339072.

A123542 Triangular array T(n,k) giving number of 3-connected graphs with n labeled nodes and k edges (n >= 4, ceiling(3*n/2) <= k <= n(n-1)/2).

Original entry on oeis.org

1, 15, 10, 1, 70, 492, 690, 395, 105, 15, 1, 5040, 28595, 58905, 63990, 42392, 18732, 5880, 1330, 210, 21, 1, 16800, 442680, 2485920, 6629056, 10684723, 11716068, 9409806, 5824980, 2872317, 1147576, 373156, 98112, 20475, 3276
Offset: 4

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

Examples

			Triangle begins:
n = 4
k = 6 : 1
Total( 4) = 1
n = 5
k = 8 : 15
k = 9 : 10
k = 10 : 1
Total( 5) = 26
n = 6
k = 9 : 70
k = 10 : 492
k = 11 : 690
k = 12 : 395
k = 13 : 105
k = 14 : 15
k = 15 : 1
Total( 6) = 1768
n = 7
k = 11 : 5040
k = 12 : 28595
k = 13 : 58905
k = 14 : 63990
k = 15 : 42392
k = 16 : 18732
k = 17 : 5880
k = 18 : 1330
k = 19 : 210
k = 20 : 21
k = 21 : 1
Total( 7) = 225096
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

Row sums give A005644. Cf. A123527, A123534.

A322139 Number of labeled 2-connected simple graphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 0, 1, 3, 18, 131, 1180, 12570, 154535, 2151439, 33431046, 573197723, 10743619285, 218447494812, 4787255999220, 112454930390211, 2818138438707516, 75031660452368001, 2114705500316025737, 62890323682634277951, 1967901134191778583146, 64623905086814216468839
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Formula

a(n) = Sum_{i=3..n} A123534(i, n). - Andrew Howroyd, Nov 30 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018
Showing 1-5 of 5 results.