cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123551 Triangle read by rows: T(n,k) gives number of unlabeled graphs without endpoints on n nodes and k edges, (n >= 0, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 4, 3, 2, 1, 1, 1, 0, 0, 1, 1, 2, 6, 8, 13, 16, 13, 8, 5, 2, 1, 1, 1, 0, 0, 1, 1, 2, 6, 10, 22, 48, 76, 97, 102, 84, 60, 39, 20, 10, 5, 2, 1, 1, 1, 0, 0, 1, 1, 2, 6, 10, 25, 64, 152, 331, 617, 930, 1173, 1253, 1140
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 1;
[2] 1, 0;
[3] 1, 0, 0, 1;
[4] 1, 0, 0, 1, 1, 1, 1;
[5] 1, 0, 0, 1, 1, 2, 4, 3,  2,  1,  1;
[6] 1, 0, 0, 1, 1, 2, 6, 8, 13, 16, 13, 8, 5, 2, 1, 1;
  ...
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

Row sums are A004110.
Cf. A008406, A240168, A369928 (labeled).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    row(n) = {my(s=0); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w) * y^(n-k)*polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); Vecrev(s, binomial(n,2)+1)}
    { for(n=0, 6, print(row(n))) } \\ Andrew Howroyd, Feb 07 2024

Formula

T(n,k) = A008406(n,k) - A240168(n,k). - Andrew Howroyd, Apr 16 2021