cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A004110 Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708, 24605674623474428415849066062642456
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - Tanya Khovanova, Oct 23 2008

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
  • F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A123551.
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see A261919.
Cf. A000088.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ Compare A000088.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018

A369932 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 3, 5, 2, 0, 0, 0, 0, 2, 11, 9, 3, 0, 0, 0, 0, 1, 15, 32, 16, 4, 0, 0, 0, 0, 1, 12, 63, 76, 25, 5, 0, 0, 0, 0, 0, 8, 89, 234, 162, 39, 6, 0, 0, 0, 0, 0, 5, 97, 515, 730, 332, 60, 9
Offset: 1

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Examples

			Triangle begins:
  0;
  0, 0;
  0, 0, 1;
  0, 0, 0, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 1, 3,  2;
  0, 0, 0, 0, 3,  5,  2;
  0, 0, 0, 0, 2, 11,  9,  3;
  0, 0, 0, 0, 1, 15, 32, 16,  4;
  0, 0, 0, 0, 1, 12, 63, 76, 25, 5;
  ...
		

Crossrefs

Row sums are A369290.
Column sums are A261919.
Main diagonal is A008483.
Cf. A342557 (connected), A123551 (without endpoints).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
    T(n)={my(r=Vec(substvec(G(n),[x,y],[y,x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y),i)) }
    { my(A=T(12)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A123551(k,n) - A123551(k-1,n).

A369928 Triangle read by rows: T(n,k) is the number of simple graphs on n labeled vertices with k edges and without endpoints, n >= 0, 0 <= k <= n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 6, 1, 1, 0, 0, 10, 15, 42, 90, 100, 45, 10, 1, 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1, 1, 0, 0, 35, 105, 462, 2310, 9495, 32130, 85365, 166341, 231861, 237125, 184380, 111870, 53634, 20307, 5985, 1330, 210, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 1;
[2] 1, 0;
[3] 1, 0, 0,  1;
[4] 1, 0, 0,  4,  3,  6,    1;
[5] 1, 0, 0, 10, 15,  42,  90,  100,   45,   10,    1;
[6] 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1;
		

Crossrefs

Row sums are A059167.
Cf. A084546, A123551 (unlabeled), A245796 (with endpoints).

Programs

  • PARI
    \\ row(n) gives n-th row as vector.
    row(n)={my(A=x/exp(x*y + O(x*x^n))); Vecrev(polcoef(serlaplace(exp(y*x^2/2 + O(x*x^n)) * sum(k=0, n, (1 + y)^binomial(k, 2)*A^k/k!)), n), 1 + binomial(n,2))}
    { for(n=0, 6, print(row(n))) }

Formula

T(n,k) = A084546(n,k) - A245796(n,k).
E.g.f.: exp(y*x^2/2) * Sum_{k>=0} (1 + y)^binomial(k, 2)*(x/exp(y*x))^k/k!.

A368987 Triangle read by rows: T(n,k) is the number of unlabeled point-determining graphs with n nodes and k edges, n >= 0, 0 <= k <= n*(n - 1)/2.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 3, 3, 4, 2, 1, 0, 1, 0, 0, 0, 1, 3, 6, 11, 14, 13, 12, 9, 5, 2, 1, 0, 1, 0, 0, 0, 1, 1, 5, 15, 31, 50, 77, 89, 94, 83, 61, 37, 24, 11, 5, 2, 1, 0, 1, 0, 0, 0, 0, 1, 3, 11, 35, 89, 197, 371, 603, 861, 1068, 1154, 1098, 926, 679, 445, 257, 134, 65, 30, 11, 5, 2, 1, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 15 2024

Keywords

Comments

Point-determining graphs are also called mating graphs.

Examples

			Triangle begins:
[0] 1;
[1] 1;
[2] 0, 1;
[3] 0, 1, 0, 1;
[4] 0, 0, 1, 2, 1, 0,  1;
[5] 0, 0, 1, 1, 3, 3,  4,  2,  1,  0,  1;
[6] 0, 0, 0, 1, 3, 6, 11, 14, 13, 12,  9,  5,  2,  1,  0,  1;
[7] 0, 0, 0, 1, 1, 5, 15, 31, 50, 77, 89, 94, 83, 61, 37, 24, 11, 5, 2, 1, 0, 1;
		

Crossrefs

Row sums are A004110.
Cf. A123551 (same row sums), A369283 (labeled).
Showing 1-4 of 4 results.