A342557
T(n,m) is the number of unlabeled connected graphs without endpoints on m nodes with n edges, where T(n,m), m <= n, is a triangle read by rows.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 5, 1, 0, 0, 0, 0, 2, 11, 8, 1, 0, 0, 0, 0, 1, 15, 31, 12, 1, 0, 0, 0, 0, 1, 12, 63, 71, 16, 1, 0, 0, 0, 0, 0, 8, 89, 231, 144, 21, 1, 0, 0, 0, 0, 0, 5, 97, 513, 707, 274, 27, 1
Offset: 1
The triangle begins
0;
0, 0;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 1, 1;
0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 3, 5, 1;
0, 0, 0, 0, 2, 11, 8, 1;
0, 0, 0, 0, 1, 15, 31, 12, 1;
0, 0, 0, 0, 1, 12, 63, 71, 16, 1;
-
\\ Needs G() defined in A369932.
InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
T(n)={my(r=Vec(InvEulerMTS(substvec(G(n),[x,y],[y,x])))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y),i)) }
{ my(A=T(12)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 07 2024
A369290
Number of unlabeled simple graphs without endpoints with n edges.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 6, 10, 25, 68, 182, 538, 1748, 5935, 21585, 82904, 334037, 1406934, 6167455, 28033776, 131770437, 638956188, 3189940453, 16369201031, 86214798929, 465480395911, 2573390342437, 14553415319929, 84118459655982, 496514424803358, 2990633679878654
Offset: 0
-
\\ See also A369932 for a more efficient program.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])*edges(p, w->1+x^w + O(x*x^n))); Vec(s/(2*n)!)}
A369931
Triangle read by rows: T(n,k) is the number of labeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 6, 12, 0, 0, 0, 1, 85, 70, 0, 0, 0, 0, 100, 990, 465, 0, 0, 0, 0, 45, 2805, 11550, 3507, 0, 0, 0, 0, 10, 3595, 59990, 140420, 30016, 0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884, 0, 0, 0, 0, 0, 1335, 222516, 4710300, 22467312, 24556140, 3026655
Offset: 1
Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 0, 3;
0, 0, 0, 6, 12;
0, 0, 0, 1, 85, 70;
0, 0, 0, 0, 100, 990, 465;
0, 0, 0, 0, 45, 2805, 11550, 3507;
0, 0, 0, 0, 10, 3595, 59990, 140420, 30016;
0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884;
...
The T(3,3) = 1 matrix is:
[0 1 1]
[1 0 1]
[1 1 0]
The T(4,4) = 3 matrices are:
[0 0 1 1] [0 1 0 1] [0 1 1 0]
[0 0 1 1] [1 0 1 0] [1 0 0 1]
[1 1 0 0] [0 1 0 1] [1 0 0 1]
[1 1 0 0] [1 0 1 0] [0 1 1 0]
-
G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)}
T(n)={my(r=Vec(substvec(serlaplace(G(n)), [x, y], [y, x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y), i))}
A370063
Triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs without endpoints with n edges covering k vertices, 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 5, 2, 0, 0, 1, 5, 14, 10, 4, 0, 0, 1, 6, 25, 33, 18, 4, 0, 0, 1, 8, 46, 96, 90, 31, 7, 0, 0, 1, 10, 75, 227, 330, 194, 52, 8, 0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12, 0, 0, 1, 14, 173, 982, 2847, 3908, 2591, 800, 128, 14
Offset: 0
Triangle begins:
1;
0, 0;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 2, 2;
0, 0, 1, 3, 5, 2;
0, 0, 1, 5, 14, 10, 4;
0, 0, 1, 6, 25, 33, 18, 4;
0, 0, 1, 8, 46, 96, 90, 31, 7;
0, 0, 1, 10, 75, 227, 330, 194, 52, 8;
0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12;
...
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) / edges(p, w->1-y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
T(n)={my(r=Vec(substvec(G(n), [x, y], [y, x]))); vector(#r, i, Vecrev(Pol(r[i]), i)) }
{ my(A=T(10)); for(i=1, #A, print(A[i])) }
Showing 1-4 of 4 results.
Comments