cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A004108 Number of n-node unlabeled connected graphs without endpoints.

Original entry on oeis.org

1, 1, 0, 1, 3, 11, 61, 507, 7442, 197772, 9808209, 902884343, 153723152913, 48443147912137, 28363697921914475, 30996525982586676021, 63502034385272108655525, 244852545421597419740767106, 1783161611489937453151313949442, 24603891216883233547700609793901996
Offset: 0

Views

Author

Keywords

Comments

Also number of n-node unlabeled connected mating graphs, cf. A006024 and A092430 (conjectured by Vladeta Jovovic, proved by G. Kilibarda). - Vladeta Jovovic, Oct 07 2004

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), formula (8.7.11).
  • Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004110 (Euler Transform, n-node unlabeled graphs without endpoints).
Cf. A006024, A092430 (n-node labeled connected mating graphs).
See also A261919.
Counts include those for distance-critical graphs, A349402.

Programs

  • Mathematica
    terms = 19;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}];
    A004110 = Table[b[n], {n, 1, terms-1}];
    Join[{1}, EULERi[A004110]] (* Jean-François Alcover, Jan 21 2019, after Andrew Howroyd *)

Formula

Inverse Euler transform of A004110. - Andrew Howroyd, Sep 09 2018

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 09 2018

A083920 Number of nontriangular numbers <= n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62
Offset: 0

Views

Author

Clark Kimberling, May 08 2003

Keywords

Comments

An alternative description: the sequence of nonnegative integers with the triangular numbers repeated.
a(t(n)) = t(n+1), where t(n)=A000217(n)=n(n+1)/2, the n-th triangular number. For n>=1, a(n)=a(n-1) if and only if n is a triangular number; otherwise, a(n)=1+a(n-1).

Examples

			a(7)=4 counts the nontriangular numbers, 2,4,5,7, that are <=7.
		

Crossrefs

Essentially partial sums of A023532.
Number of nonzero terms in row n+1 of A342557.

Programs

  • Haskell
    a083920 n = a083920_list !! n
    a083920_list = scanl1 (+) $ map (1 -) a010054_list
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Magma
    [n-Floor((Sqrt(8*n+1)-1)/2):n in [1..75]]; // Marius A. Burtea, Jun 19 2019
    
  • Mathematica
    f[n_] := n - Floor[(Sqrt[8n + 1] - 1)/2]; Table[ f[n], {n, 0, 73}] (* Robert G. Wilson v, Oct 22 2005 *)
    Accumulate[Table[If[OddQ[Sqrt[8n+1]],0,1],{n,0,120}]] (* Harvey P. Dale, Oct 14 2014 *)
  • PARI
    a(n)=n-(sqrtint(8*n+1)-1)\2 \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from math import isqrt
    def A083920(n): return n-(k:=isqrt(m:=n+1<<1))+((m>=k*(k+1)+1)^1) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = n-floor((x-1)/2) = n-A003056(n), where x = sqrt(8*n+1).
A005318(n+1) = 2*A005318(n)-A205744(n), A205744(n) = A005318(a(n)), a(n) = n - A002024(n). - N. J. A. Sloane, Feb 11 2012
G.f.: 1/(1 - x)^2 - (1/(1 - x))*Product_{k>=1} (1 - x^(2*k))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, May 30 2017
a(n) = n - floor(sqrt(2*n + 1) - 1/2). - Ridouane Oudra, Jun 19 2019

Extensions

Added alternative definition and Guy reference. - N. J. A. Sloane, Feb 09 2012

A342556 a(n) is the number of unlabeled connected graphs without endpoints with n edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 9, 22, 60, 164, 494, 1624, 5602, 20600, 79813, 323806, 1371025, 6034105, 27513424, 129641411, 629862824, 3149541908, 16183100922, 85328280263, 461123500894, 2551342936264, 14438734591483, 83506198920054, 493163726073210, 2971858162771887
Offset: 0

Views

Author

Hugo Pfoertner, May 21 2021

Keywords

Crossrefs

Row sums of A342557.
Cf. A004108 (n vertices), A307317 (multigraph), A369290 (not necessarily connected).

Formula

Inverse Euler transform of A369290.

Extensions

a(0)=1 prepended and a(25) onwards from Andrew Howroyd, Feb 01 2024

A369932 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 3, 5, 2, 0, 0, 0, 0, 2, 11, 9, 3, 0, 0, 0, 0, 1, 15, 32, 16, 4, 0, 0, 0, 0, 1, 12, 63, 76, 25, 5, 0, 0, 0, 0, 0, 8, 89, 234, 162, 39, 6, 0, 0, 0, 0, 0, 5, 97, 515, 730, 332, 60, 9
Offset: 1

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Examples

			Triangle begins:
  0;
  0, 0;
  0, 0, 1;
  0, 0, 0, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 1, 3,  2;
  0, 0, 0, 0, 3,  5,  2;
  0, 0, 0, 0, 2, 11,  9,  3;
  0, 0, 0, 0, 1, 15, 32, 16,  4;
  0, 0, 0, 0, 1, 12, 63, 76, 25, 5;
  ...
		

Crossrefs

Row sums are A369290.
Column sums are A261919.
Main diagonal is A008483.
Cf. A342557 (connected), A123551 (without endpoints).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
    T(n)={my(r=Vec(substvec(G(n),[x,y],[y,x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y),i)) }
    { my(A=T(12)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A123551(k,n) - A123551(k-1,n).

A360030 a(n) is the minimum number of equal resistors needed in an electrical network so that n nodes can be selected in this network such that there are n*(n-1)/2 distinct resistances 0 < R < oo between the selected nodes.

Original entry on oeis.org

1, 3, 5, 8, 10, 11, 12, 14, 15, 16, 18, 19, 21
Offset: 2

Views

Author

Hugo Pfoertner and Rainer Rosenthal, Feb 12 2023

Keywords

Examples

			a(2) = 1, [[1,2]]
.
  1           2
  O----R1R----O
  R_12 = 1
.
a(3) = 3, [[1,2]^2,[2,3]]
.
  1   .---R1R---.   2           3
  O --|         |-- O ---R3R--- O
      .---R2R---.
.
  R_12 = 1/2, R_13 = 3/2,
              R_23 = 1
.
a(4) = 5, node 5 hidden, [[1,2],[2,3]^2,[3,5],[4,5]]
.
  1           2   .---R2R---.   3          (5)          4
  O ---R1R--- O --|         |-- O ---R4R--- O ---R5R--- O
                  .---R3R---.
.
  R_12 = 1, R_13 = 3/2, R_14 = 7/2,
            R_23 = 1/2, R_24 = 5/2,
                        R_34 = 2
.
a(5) = 8, node 6 hidden,
  [[1, 2], [1, 3]^2, [2, 3], [2, 4], [3, 6], [4, 5], [4, 6]]
.
    1             2           4           5
    O-----R1R-----O----R5R----O----R8R----O
    |             |           |
    |            R4R         R7R
    .---R2R---.   |           |
    |         |---O----R6R----O
    .---R3R---.   3          (6)
.
   R_12 = 5/9, R_13 = 7/18, R_14 = 19/18, R_15 = 37/18,
               R_23 = 1/2,  R_24 = 13/18, R_25 = 31/18,
                            R_34 =  8/9,  R_35 = 17/9,
                                          R_45 =  1
		

Crossrefs

Extensions

a(14) from Klaus Nagel and Hugo Pfoertner, Aug 21 2025
Showing 1-5 of 5 results.