cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A004110 Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708, 24605674623474428415849066062642456
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - Tanya Khovanova, Oct 23 2008

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
  • F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A123551.
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see A261919.
Cf. A000088.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ Compare A000088.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018

A059167 Number of n-node labeled graphs without endpoints.

Original entry on oeis.org

1, 1, 1, 2, 15, 314, 13757, 1142968, 178281041, 52610850316, 29702573255587, 32446427369694348, 69254848513798160815, 291053505824567573585744, 2421830049319361003822380177, 40050220743831370293688592267252, 1319550593412053164173947687592553185
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2001

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=0 of A327369.
Cf. A059166 (n-node connected labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).

Programs

  • Maple
    F:= proc(N) local S;
       S:= series(exp(1/2*x^2)*Sum(2^binomial(n, 2)*(x/exp(x))^n/n!, n = 0 .. N),x,N+1);
       seq(coeff(S,x,i)*i!,i=0..N)
    end proc:
    F(20); # Robert Israel, Sep 18 2016
  • Mathematica
    b[n_] := If[n < 3, Boole[n == 1], n!*Sum[(-1)^(n - j) * SeriesCoefficient[1 + Log[Sum[2^(k*(k - 1)/2)*x^k/k!, {k, 0, j}]], {x, 0, j}] * j^(n - j)/(n - j)!, {j, 0, n}]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, i] b[i + 1] a[n - i - 1], {i, 0, n - 1}]; Table[a@ n, {n, 0, 15}] (* Michael De Vlieger, Sep 19 2016, after Vaclav Kotesovec at A059166 *)
  • PARI
    seq(n)={my(A=x/exp(x + O(x^n))); Vec(serlaplace(exp(x^2/2 + O(x*x^n)) * sum(k=0, n, 2^binomial(k, 2)*A^k/k!)))} \\ Andrew Howroyd, Sep 09 2018

Formula

a(n) = Sum_{i=0..n-1} binomial(n-1, i)*b(i+1)*a(n-i-1), n>0, a(0)=1, where b(n) is number of n-node connected labeled graphs without endpoints (Cf. A059166).
E.g.f.: exp(x^2/2)*(Sum_{n >= 0} 2^binomial(n, 2)*(x/exp(x))^n/n!). - Vladeta Jovovic, Mar 23 2004
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, Sep 22 2016

Extensions

More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001

A059166 Number of n-node connected labeled graphs without endpoints.

Original entry on oeis.org

1, 1, 0, 1, 10, 253, 12058, 1052443, 169488200, 51045018089, 29184193354806, 32122530765469967, 68867427921051098084, 290155706369032525823085, 2417761578629525173499004146, 40013923790443379076988789688611, 1318910080173114018084245406769861936
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2001

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 404.

Crossrefs

Cf. A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).

Programs

  • Maple
    c:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*c(k), k=1..n-1)/n)
        end:
    a:= n-> max(0, add((-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, i=0..n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 27 2017
  • Mathematica
    Flatten[{1,1,0,Table[n!*Sum[(-1)^(n-j)*SeriesCoefficient[1+Log[Sum[2^(k*(k-1)/2)*x^k/k!,{k,0,j}]],{x,0,j}]*j^(n-j)/(n-j)!,{j,0,n}],{n,3,15}]}] (* Vaclav Kotesovec, May 14 2015 *)
    c[0] = 1; c[n_] := c[n] = 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k)*(n - k - 1)/2)*c[k], {k, 1, n-1}]/n; a[0] = a[1] = 1; a[2] = 0; a[n_] := Sum[(-1)^i*Binomial[n, i]*c[n-i]*(n-i)^i, {i, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, using Alois P. Heinz's code for c(n) *)
  • PARI
    seq(n)={Vec(serlaplace(1 + x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))))} \\ Andrew Howroyd, Sep 09 2018

Formula

a(n) = Sum_{i=0..n} (-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, for n>2, a(0)=1, a(1)=1, a(2)=0, where c(n) is number of n-node connected labeled graphs (cf. A001187).
E.g.f.: 1 + x^2/2 + log(Sum_{n >= 0} 2^binomial(n, 2)*(x*exp(-x))^n/n!).
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 14 2015
Logarithmic transform of A100743, if we assume a(1) = 0. - Gus Wiseman, Aug 15 2019

Extensions

More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001

A261919 Number of n-node unlabeled graphs without isolated nodes or endpoints (i.e., no nodes of degree 0 or 1).

Original entry on oeis.org

1, 0, 0, 1, 3, 11, 62, 510, 7459, 197867, 9808968, 902893994, 153723380584, 48443158427276, 28363698856991892, 30996526139142442460, 63502034434187094606966, 244852545450108200518282934, 1783161611521019613186341526720, 24603891216946828886755056314074748
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2015

Keywords

Examples

			From _Gus Wiseman_, Aug 15 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 graphs (empty columns not shown):
  {}  {12,13,23}  {12,13,24,34}        {12,13,24,35,45}
                  {13,14,23,24,34}     {12,14,25,34,35,45}
                  {12,13,14,23,24,34}  {12,15,25,34,35,45}
                                       {13,14,23,24,35,45}
                                       {12,13,24,25,34,35,45}
                                       {13,15,24,25,34,35,45}
                                       {14,15,24,25,34,35,45}
                                       {12,13,15,24,25,34,35,45}
                                       {14,15,23,24,25,34,35,45}
                                       {13,14,15,23,24,25,34,35,45}
                                       {12,13,14,15,23,24,25,34,35,45}
(End)
		

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.

Crossrefs

Cf. A004108 (connected version), A004110 (version allowing isolated nodes).
The labeled version is A100743.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1-x^p[[i]], {i, 1, Length[p]}], x, n-k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; b[0] = 1;
    a[n_] := b[n] - b[n-1];
    a /@ Range[0, 19] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A004110 *)

Formula

First differences of A004110: a(n) = A004110(n)-A004110(n-1).
Euler transform of A004108, if we assume A004108(1) = 0. - Gus Wiseman, Aug 15 2019

Extensions

a(1)-a(11) computed by Brendan McKay, Sep 15 2015
a(12)-a(26) computed from A004110 by Max Alekseyev, Sep 16 2015
a(0) = 1 prepended by Gus Wiseman, Aug 15 2019

A092430 Number of n-node labeled connected mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 25, 438, 18388, 1409674, 206682994, 58152537184, 31715884061624, 33827568738189576, 71066571962396085656, 295645506683051376527648, 2444503529745123474354656720, 40269655263141217619453414445968
Offset: 2

Views

Author

Goran Kilibarda, Vladeta Jovovic, Mar 22 2004

Keywords

Comments

Number of n-node unlabeled connected mating graphs = number of n-node unlabeled connected graphs without endpoints, n>2; cf. A004108.
The number of graphs of this type with n>=1 nodes and 1<=k<=n components defines the triangle
0;
1,0;
1,0,0;
25,3,0,0;
438,10,0,0,0;
18388,385,15,0,0,0;
1409674,10073,105,0,0,0,0;
206682994,561267,5530,105,0,0,0,0;
58152537184,53672556,197344,1260,0,0,0,0,0;
with row sums A007833. - R. J. Mathar, Apr 29 2019

References

  • Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.

Crossrefs

Programs

  • PARI
    a(n)={n!*polcoef(log(sum(i=0, n, 2^binomial(i, 2)*log(1+x + O(x*x^n))^i/i!)/(1+x)), n)} \\ Andrew Howroyd, Sep 09 2018

Formula

From Vladeta Jovovic, Mar 28 2004: (Start)
E.g.f.: log((Sum_{n>=0} 2^binomial(n, 2)*log(1+x)^n/n!)/(1+x)).
a(n) = A079306(n) + (-1)^n*(n-1)!. (End)

A129584 Number of unlabeled bi-point-determining graphs: graphs in which no two vertices have the same neighborhoods or the same augmented neighborhoods (the augmented neighborhood of a vertex is the neighborhood of the vertex union the vertex itself).

Original entry on oeis.org

1, 0, 0, 1, 6, 36, 324, 5280, 156088, 8415760
Offset: 1

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

This is the unlabeled case of bi-point-determining graphs, which are basically graphs that are both point-determining (no two vertices have the same neighborhoods) and co-point-determining (graphs whose complements are point-determining)

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

A342556 a(n) is the number of unlabeled connected graphs without endpoints with n edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 9, 22, 60, 164, 494, 1624, 5602, 20600, 79813, 323806, 1371025, 6034105, 27513424, 129641411, 629862824, 3149541908, 16183100922, 85328280263, 461123500894, 2551342936264, 14438734591483, 83506198920054, 493163726073210, 2971858162771887
Offset: 0

Views

Author

Hugo Pfoertner, May 21 2021

Keywords

Crossrefs

Row sums of A342557.
Cf. A004108 (n vertices), A307317 (multigraph), A369290 (not necessarily connected).

Formula

Inverse Euler transform of A369290.

Extensions

a(0)=1 prepended and a(25) onwards from Andrew Howroyd, Feb 01 2024

A342557 T(n,m) is the number of unlabeled connected graphs without endpoints on m nodes with n edges, where T(n,m), m <= n, is a triangle read by rows.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 5, 1, 0, 0, 0, 0, 2, 11, 8, 1, 0, 0, 0, 0, 1, 15, 31, 12, 1, 0, 0, 0, 0, 1, 12, 63, 71, 16, 1, 0, 0, 0, 0, 0, 8, 89, 231, 144, 21, 1, 0, 0, 0, 0, 0, 5, 97, 513, 707, 274, 27, 1
Offset: 1

Views

Author

Hugo Pfoertner, May 21 2021

Keywords

Comments

The number of nonzero terms in the n-th row is A083920(n-1). - Hugo Pfoertner, Feb 01 2024

Examples

			The triangle begins
  0;
  0, 0;
  0, 0, 1;
  0, 0, 0, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 1, 3,  1;
  0, 0, 0, 0, 3,  5,  1;
  0, 0, 0, 0, 2, 11,  8,  1;
  0, 0, 0, 0, 1, 15, 31, 12,  1;
  0, 0, 0, 0, 1, 12, 63, 71, 16, 1;
		

Crossrefs

Cf. A004108 (column sums), A342556 (row sums).
Cf. A083920, A369932 (not necessarily connected).

Programs

  • PARI
    \\ Needs G() defined in A369932.
    InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
    T(n)={my(r=Vec(InvEulerMTS(substvec(G(n),[x,y],[y,x])))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y),i)) }
    { my(A=T(12)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 07 2024

Formula

Bivariate inverse Euler transform of A369932. - Andrew Howroyd, Feb 07 2024

A129583 Number of labeled bi-point-determining graphs with n vertices.

Original entry on oeis.org

1, 1, 0, 0, 12, 312, 13824, 1147488, 178672128, 52666091712, 29715982846848, 32452221242518272, 69259424722321036032, 291060255757818125657088, 2421848956937579216663491584, 40050322614433939228627991906304, 1319551659023608317386779165849208832
Offset: 0

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

A bi-point determining graph is a graph in which no two vertices have the same neighborhoods or the same augmented neighborhoods (the augmented neighborhood of a vertex is the neighborhood of the vertex union the vertex itself).

References

  • R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Programs

  • PARI
    seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(subst(g, x, 2*log(1+x+O(x*x^n))-x)))} \\ Andrew Howroyd, May 06 2021

Formula

E.g.f.: G(2*log(1+x)-x) where G(x) is the e.g.f. of A006125.

Extensions

a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, May 06 2021

A129585 Number of labeled connected bi-point-determining graphs with n vertices (see A129583).

Original entry on oeis.org

1, 1, 0, 0, 12, 252, 12312, 1061304, 170176656, 51134075424, 29204599254624, 32130964585236096, 68873851786953047040, 290164895151435531345024, 2417786648013402212500060416, 40014055814155246577685250570752, 1318911434129029730677931158374449664
Offset: 0

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

The calculation of connected bi-point-determining graphs is carried out by examining the connected components of bi-point-determining graphs. For more details, see reference.

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Programs

  • Mathematica
    max = 15; f[x_] := x + Log[ Sum[ 2^Binomial[n, 2]*((2*Log[1 + x] - x)^n/n!), {n, 0, max}]/(1 + x)]; A129585 = Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!, 1](* Jean-François Alcover, Jan 13 2012, after e.g.f. *)
  • PARI
    seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(1+x+log(subst(g, x, 2*log(1+x+O(x*x^n))-x)/(1+x))))} \\ Andrew Howroyd, May 06 2021

Formula

E.g.f.: 1 + x + log((Sum_{n>=0} 2^binomial(n,2)*(2*log(1+x)-x)^n/n!)/(1+x)). - Goran Kilibarda, Vladeta Jovovic, May 09 2007
E.g.f.: 1 + x + log(B(x)/(1+x)) where B(x) is the e.g.f. of A129583. - Andrew Howroyd, May 06 2021

Extensions

More terms from Goran Kilibarda, Vladeta Jovovic, May 09 2007
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, May 06 2021
Showing 1-10 of 23 results. Next