cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A004110 Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708, 24605674623474428415849066062642456
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - Tanya Khovanova, Oct 23 2008

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
  • F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A123551.
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see A261919.
Cf. A000088.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ Compare A000088.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018

A006024 Number of labeled mating graphs with n nodes. Also called point-determining graphs.

Original entry on oeis.org

1, 1, 1, 4, 32, 588, 21476, 1551368, 218608712, 60071657408, 32307552561088, 34179798520396032, 71474651351939175424, 296572048493274368856832, 2448649084251501449508762880, 40306353989748719650902623919616
Offset: 0

Views

Author

Keywords

Comments

A mating graph is one in which no two vertices have identical adjacencies with the other vertices. - Ronald C. Read and Vladeta Jovovic, Feb 10 2003
Also number of (n-1)-node labeled mating graphs allowing loops and without isolated nodes. - Vladeta Jovovic, Mar 08 2008

Examples

			Consider the square (cycle of length 4) on vertices 1, 2, 3 and 4 in that order. Join a fifth vertex (5) to vertices 1, 3 and 4. The resulting graph is not a mating graph since vertices 1 and 3 both have the set {2, 4, 5} as neighbors. If we delete the edge (1,5) then the resulting graph is a mating graph: the neighborhood sets for vertices 1, 2, 3, 4 and 5 are respectively {2,4}, {1,3}, {2,4,5}, {1,3,5} and {3,4} - all different.
		

References

  • R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006025.
Cf. bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.
Cf. A007833, A079306 (connected)

Programs

  • Mathematica
    a[n_] := Sum[StirlingS1[n, k] 2^Binomial[k, 2], {k, 0, n}];
    Array[a, 15] (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    a(n)=n!*polcoeff(sum(k=0,n,2^(k*(k-1)/2)*log(1+x+x*O(x^n))^k/k!),n) \\ Paul D. Hanna, May 20 2009

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k)*2^binomial(k, 2). - Ronald C. Read and Vladeta Jovovic, Feb 10 2003
E.g.f.: Sum_{n>=0} 2^(n(n-1)/2)*log(1+x)^n/n!. - Paul D. Hanna, May 20 2009

Extensions

More terms from Ronald C. Read and Vladeta Jovovic, Feb 10 2003
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018

A129583 Number of labeled bi-point-determining graphs with n vertices.

Original entry on oeis.org

1, 1, 0, 0, 12, 312, 13824, 1147488, 178672128, 52666091712, 29715982846848, 32452221242518272, 69259424722321036032, 291060255757818125657088, 2421848956937579216663491584, 40050322614433939228627991906304, 1319551659023608317386779165849208832
Offset: 0

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

A bi-point determining graph is a graph in which no two vertices have the same neighborhoods or the same augmented neighborhoods (the augmented neighborhood of a vertex is the neighborhood of the vertex union the vertex itself).

References

  • R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Programs

  • PARI
    seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(subst(g, x, 2*log(1+x+O(x*x^n))-x)))} \\ Andrew Howroyd, May 06 2021

Formula

E.g.f.: G(2*log(1+x)-x) where G(x) is the e.g.f. of A006125.

Extensions

a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, May 06 2021

A129585 Number of labeled connected bi-point-determining graphs with n vertices (see A129583).

Original entry on oeis.org

1, 1, 0, 0, 12, 252, 12312, 1061304, 170176656, 51134075424, 29204599254624, 32130964585236096, 68873851786953047040, 290164895151435531345024, 2417786648013402212500060416, 40014055814155246577685250570752, 1318911434129029730677931158374449664
Offset: 0

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

The calculation of connected bi-point-determining graphs is carried out by examining the connected components of bi-point-determining graphs. For more details, see reference.

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Programs

  • Mathematica
    max = 15; f[x_] := x + Log[ Sum[ 2^Binomial[n, 2]*((2*Log[1 + x] - x)^n/n!), {n, 0, max}]/(1 + x)]; A129585 = Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!, 1](* Jean-François Alcover, Jan 13 2012, after e.g.f. *)
  • PARI
    seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(1+x+log(subst(g, x, 2*log(1+x+O(x*x^n))-x)/(1+x))))} \\ Andrew Howroyd, May 06 2021

Formula

E.g.f.: 1 + x + log((Sum_{n>=0} 2^binomial(n,2)*(2*log(1+x)-x)^n/n!)/(1+x)). - Goran Kilibarda, Vladeta Jovovic, May 09 2007
E.g.f.: 1 + x + log(B(x)/(1+x)) where B(x) is the e.g.f. of A129583. - Andrew Howroyd, May 06 2021

Extensions

More terms from Goran Kilibarda, Vladeta Jovovic, May 09 2007
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, May 06 2021

A129586 Number of unlabeled connected bi-point-determining graphs (see A129583).

Original entry on oeis.org

1, 0, 0, 1, 5, 31, 293, 4986, 151096, 8264613, 812528493, 144251345591, 46649058611515, 27744159658789435, 30603223477819571330, 63039669933956074333128, 243839768084859914114367906, 1779006737976575676931317142360, 24571827603944282248499044846893618
Offset: 1

Views

Author

Ji Li (vieplivee(AT)hotmail.com), May 07 2007

Keywords

Comments

The calculation of the number of connected bi-point-determining graphs is carried out by examining the connected components of bi-point-determining graphs. For more details, see linked paper "Enumeration of point-determining Graphs".

Crossrefs

Cf. graphs: labeled A006125, unlabeled A000568; connected graphs: labeled A001187, unlabeled A001349; point-determining graphs: labeled A006024, unlabeled A004110; connected point-determining graphs: labeled A092430, unlabeled A004108; connected co-point-determining graphs: labeled A079306, unlabeled A004108; bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.

Extensions

151096 and 8264613 from Vladeta Jovovic, May 10 2007
a(n) for n >= 11 from Martin Rubey, May 08 2025
Showing 1-5 of 5 results.