A004110
Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).
Original entry on oeis.org
1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708, 24605674623474428415849066062642456
Offset: 0
- F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
- F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..26 from R. W. Robinson)
- David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140 [math.CO], 2013.
- Ira M. Gessel and Ji Li, Enumeration of point-determining graphs, J. Combinatorial Theory Ser. A 118 (2011), 591-612.
- Hemanshu Kaul and Jeffrey A. Mudrock, Counting List Colorings of Unlabeled Graphs, arXiv:2409.06063 [math.CO], 2024. See p. 6.
- R. J. Mathar, Illustrations for n=1..5 nodes.
- Ronald C. Read, The enumeration of mating-type graphs, Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
- R. W. Robinson, Graphs without endpoints - computer printout.
- N. J. A. Sloane, Illustration of a(0)-a(5).
Cf.
A059166 (n-node connected labeled graphs without endpoints),
A059167 (n-node labeled graphs without endpoints),
A004108 (n-node connected unlabeled graphs without endpoints),
A006024 (number of labeled mating graphs with n nodes),
A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see
A261919.
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
-
\\ Compare A000088.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018
A006024
Number of labeled mating graphs with n nodes. Also called point-determining graphs.
Original entry on oeis.org
1, 1, 1, 4, 32, 588, 21476, 1551368, 218608712, 60071657408, 32307552561088, 34179798520396032, 71474651351939175424, 296572048493274368856832, 2448649084251501449508762880, 40306353989748719650902623919616
Offset: 0
Consider the square (cycle of length 4) on vertices 1, 2, 3 and 4 in that order. Join a fifth vertex (5) to vertices 1, 3 and 4. The resulting graph is not a mating graph since vertices 1 and 3 both have the set {2, 4, 5} as neighbors. If we delete the edge (1,5) then the resulting graph is a mating graph: the neighborhood sets for vertices 1, 2, 3, 4 and 5 are respectively {2,4}, {1,3}, {2,4,5}, {1,3,5} and {3,4} - all different.
- R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- I. M. Gessel and J. Li, Enumeration of Point-Determining Graphs, arXiv:0705.0042 [math.CO], 2007-2009.
- I. M. Gessel and J. Li, Enumeration of point-determining graphs, J. Combinatorial Theory Ser. A 118 (2011), 591-612.
- R. C. Read, The Enumeration of Mating-Type Graphs, Dept. Combinatorics and Optimization, Univ. Waterloo, Oct 1989. (Annotated scanned copy)
- D. Sumner, Point determination in graphs, Discrete Mathematics 5 (1973), 179-187.
-
a[n_] := Sum[StirlingS1[n, k] 2^Binomial[k, 2], {k, 0, n}];
Array[a, 15] (* Jean-François Alcover, Jul 25 2018 *)
-
a(n)=n!*polcoeff(sum(k=0,n,2^(k*(k-1)/2)*log(1+x+x*O(x^n))^k/k!),n) \\ Paul D. Hanna, May 20 2009
A129583
Number of labeled bi-point-determining graphs with n vertices.
Original entry on oeis.org
1, 1, 0, 0, 12, 312, 13824, 1147488, 178672128, 52666091712, 29715982846848, 32452221242518272, 69259424722321036032, 291060255757818125657088, 2421848956937579216663491584, 40050322614433939228627991906304, 1319551659023608317386779165849208832
Offset: 0
Ji Li (vieplivee(AT)hotmail.com), May 07 2007
- R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
-
seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(subst(g, x, 2*log(1+x+O(x*x^n))-x)))} \\ Andrew Howroyd, May 06 2021
a(0)=1 prepended and terms a(13) and beyond from
Andrew Howroyd, May 06 2021
A129585
Number of labeled connected bi-point-determining graphs with n vertices (see A129583).
Original entry on oeis.org
1, 1, 0, 0, 12, 252, 12312, 1061304, 170176656, 51134075424, 29204599254624, 32130964585236096, 68873851786953047040, 290164895151435531345024, 2417786648013402212500060416, 40014055814155246577685250570752, 1318911434129029730677931158374449664
Offset: 0
Ji Li (vieplivee(AT)hotmail.com), May 07 2007
-
max = 15; f[x_] := x + Log[ Sum[ 2^Binomial[n, 2]*((2*Log[1 + x] - x)^n/n!), {n, 0, max}]/(1 + x)]; A129585 = Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!, 1](* Jean-François Alcover, Jan 13 2012, after e.g.f. *)
-
seq(n)={my(g=sum(k=0, n, 2^binomial(k,2)*x^k/k!) + O(x*x^n)); Vec(serlaplace(1+x+log(subst(g, x, 2*log(1+x+O(x*x^n))-x)/(1+x))))} \\ Andrew Howroyd, May 06 2021
a(0)=1 prepended and terms a(16) and beyond from
Andrew Howroyd, May 06 2021
A129586
Number of unlabeled connected bi-point-determining graphs (see A129583).
Original entry on oeis.org
1, 0, 0, 1, 5, 31, 293, 4986, 151096, 8264613, 812528493, 144251345591, 46649058611515, 27744159658789435, 30603223477819571330, 63039669933956074333128, 243839768084859914114367906, 1779006737976575676931317142360, 24571827603944282248499044846893618
Offset: 1
Ji Li (vieplivee(AT)hotmail.com), May 07 2007
- Martin Rubey, Table of n, a(n) for n = 1..29
- Florian Fürnsinn, Moritz Gangl, and Martin Rubey, Unexpectedly, a symmetry on unlabeled graphs, arXiv:2505.03665 [math.CO], 2025. See p. 18.
- Ira M. Gessel and Ji Li, Enumeration of point-determining Graphs, Journal of Combinatorial Theory, Series A 118 (2011) 591-612.
Showing 1-5 of 5 results.
Comments