cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A092430 Number of n-node labeled connected mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 25, 438, 18388, 1409674, 206682994, 58152537184, 31715884061624, 33827568738189576, 71066571962396085656, 295645506683051376527648, 2444503529745123474354656720, 40269655263141217619453414445968
Offset: 2

Views

Author

Goran Kilibarda, Vladeta Jovovic, Mar 22 2004

Keywords

Comments

Number of n-node unlabeled connected mating graphs = number of n-node unlabeled connected graphs without endpoints, n>2; cf. A004108.
The number of graphs of this type with n>=1 nodes and 1<=k<=n components defines the triangle
0;
1,0;
1,0,0;
25,3,0,0;
438,10,0,0,0;
18388,385,15,0,0,0;
1409674,10073,105,0,0,0,0;
206682994,561267,5530,105,0,0,0,0;
58152537184,53672556,197344,1260,0,0,0,0,0;
with row sums A007833. - R. J. Mathar, Apr 29 2019

References

  • Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.

Crossrefs

Programs

  • PARI
    a(n)={n!*polcoef(log(sum(i=0, n, 2^binomial(i, 2)*log(1+x + O(x*x^n))^i/i!)/(1+x)), n)} \\ Andrew Howroyd, Sep 09 2018

Formula

From Vladeta Jovovic, Mar 28 2004: (Start)
E.g.f.: log((Sum_{n>=0} 2^binomial(n, 2)*log(1+x)^n/n!)/(1+x)).
a(n) = A079306(n) + (-1)^n*(n-1)!. (End)

A102579 Number of n-node labeled digraphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 3, 36, 2160, 577260, 629332740, 2778611237640, 49231195558057800, 3472536190055702938560, 971496134741368475512176960, 1076456769176854177692230640971520, 4723714896453453856832035698858163891200, 82155195331101404797144020808246647196388279040
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 21 2005

Keywords

Crossrefs

Cf. A006024, A102580 (connected), A102596 (oriented), A102598, A369283.

Programs

  • PARI
    \\ permcount, edges defined in A369283.
    a(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + 3^w)); s} \\ Andrew Howroyd, Jan 20 2024

Formula

a(n) = Sum_{k>=0} 3^k * A369283(n,k). - Andrew Howroyd, Jan 20 2024

Extensions

a(0)=1 prepended and a(12) onwards from Andrew Howroyd, Jan 20 2024

A102596 Number of n-node labeled oriented graphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 2, 14, 396, 34748, 9281784, 7454765736, 17754713559696, 124916711439302928, 2595833697671445752352, 159598823327470451154007008, 29105164897431888477084463394496, 15784299558159474546700473641953798080, 25515085085573055700779453120708128026732416
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 22 2005

Keywords

Crossrefs

Cf. A006024, A102579 (digraphs), A102597 (connected), A102599, A369283.

Programs

  • PARI
    \\ permcount, edges defined in A369283.
    a(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + 2^w)); s} \\ Andrew Howroyd, Jan 20 2024

Formula

a(n) = Sum_{k>=0} 2^k * A369283(n,k). - Andrew Howroyd, Jan 20 2024

Extensions

a(0)=1 prepended and a(13) onwards from Andrew Howroyd, Jan 20 2024

A102580 Number of n-node labeled connected digraphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 3, 27, 2025, 566190, 625831920, 2774192113350, 49208948146347570, 3472093007861482740960, 971461407155771477392032600, 1076446082528185671934674675023160, 4723701978908086606944984284949329285400, 82155133922723780601138029235949809990647219040
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 21 2005

Keywords

Crossrefs

Cf. A006024, A102579 (not necessarily connected), A102597 (oriented), A102598 (unlabeled), A369283.

Programs

  • PARI
    \\ b(n) is A102579(n); permcount, edges defined in A369283.
    b(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + 3^w)); s}
    seq(n) = {Vec(serlaplace(1 + x + log(sum(k=0, n, b(k)*x^k/k!, O(x*x^n))/(1 + x))))} \\ Andrew Howroyd, Jan 20 2024

Formula

E.g.f.: 1 + x + log(B(x)/(1 + x)) where B(x) is the e.g.f. of A102579. - Andrew Howroyd, Jan 20 2024

Extensions

a(0)=1 prepended and a(12) onwards from Andrew Howroyd, Jan 20 2024

A102597 Number of n-node labeled connected oriented graphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 2, 8, 352, 32768, 9072896, 7389698048, 17695056717824, 124756911516516352, 2594584522679818518528, 159570269132472101976145920, 29103249711329178773313159168000, 15783921191009840333055992641622114304, 25514864105378775907711095288995558725779456
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 22 2005

Keywords

Crossrefs

Cf. A006024, A102580 (digraphs), A102596 (not necessarily connected), A102599 (unlabeled), A369283.

Programs

  • PARI
    \\ b(n) is A102596(n); permcount, edges defined in A369283.
    b(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + 2^w)); s}
    seq(n) = {Vec(serlaplace(1 + x + log(sum(k=0, n, b(k)*x^k/k!, O(x*x^n))/(1 + x))))} \\ Andrew Howroyd, Jan 20 2024

Formula

E.g.f.: 1 + x + log(B(x)/(1 + x)) where B(x) is the e.g.f. of A102596. - Andrew Howroyd, Jan 20 2024

Extensions

a(0)=1 prepended and a(13) onwards from Andrew Howroyd, Jan 20 2024

A102598 Number of n-node unlabeled connected digraphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 2, 7, 102, 5034, 886456
Offset: 1

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 22 2005

Keywords

A102599 Number of n-node unlabeled connected oriented graphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 2, 16, 284, 12717, 1468870
Offset: 1

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 22 2005

Keywords

A101390 Number of n-vertex unlabeled mating graphs (cf. A006024) without endpoints.

Original entry on oeis.org

1, 0, 1, 2, 7, 41, 347, 5447, 158097, 8456025
Offset: 1

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 14 2005

Keywords

Crossrefs

A004110 Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708, 24605674623474428415849066062642456
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - Tanya Khovanova, Oct 23 2008

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
  • F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A123551.
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see A261919.
Cf. A000088.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ Compare A000088.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018

A004108 Number of n-node unlabeled connected graphs without endpoints.

Original entry on oeis.org

1, 1, 0, 1, 3, 11, 61, 507, 7442, 197772, 9808209, 902884343, 153723152913, 48443147912137, 28363697921914475, 30996525982586676021, 63502034385272108655525, 244852545421597419740767106, 1783161611489937453151313949442, 24603891216883233547700609793901996
Offset: 0

Views

Author

Keywords

Comments

Also number of n-node unlabeled connected mating graphs, cf. A006024 and A092430 (conjectured by Vladeta Jovovic, proved by G. Kilibarda). - Vladeta Jovovic, Oct 07 2004

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), formula (8.7.11).
  • Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004110 (Euler Transform, n-node unlabeled graphs without endpoints).
Cf. A006024, A092430 (n-node labeled connected mating graphs).
See also A261919.
Counts include those for distance-critical graphs, A349402.

Programs

  • Mathematica
    terms = 19;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}];
    A004110 = Table[b[n], {n, 1, terms-1}];
    Join[{1}, EULERi[A004110]] (* Jean-François Alcover, Jan 21 2019, after Andrew Howroyd *)

Formula

Inverse Euler transform of A004110. - Andrew Howroyd, Sep 09 2018

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 09 2018
Showing 1-10 of 27 results. Next