cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369283 Triangle read by rows: T(n,k) is the number of labeled point-determining graphs with n nodes and k edges, n >= 0, 0 <= k <= n*(n - 1)/2.

Original entry on oeis.org

1, 1, 0, 1, 0, 3, 0, 1, 0, 0, 3, 16, 12, 0, 1, 0, 0, 15, 60, 130, 132, 140, 80, 30, 0, 1, 0, 0, 0, 15, 600, 1692, 3160, 4635, 4620, 3480, 2088, 885, 240, 60, 0, 1, 0, 0, 0, 105, 1260, 7665, 28042, 74280, 142380, 218960, 271404, 276150, 230860, 157710, 86250, 38752, 13524, 3360, 560, 105, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2024

Keywords

Comments

Point-determining graphs are also called mating graphs.

Examples

			Triangle begins:
 [0] 1;
 [1] 1;
 [2] 0, 1;
 [3] 0, 3,  0,  1;
 [4] 0, 0,  3, 16,  12,    0,    1;
 [5] 0, 0, 15, 60, 130,  132,  140,   80,   30,    0,    1;
 [6] 0, 0,  0, 15, 600, 1692, 3160, 4635, 4620, 3480, 2088, 885, 240, 60, 0, 1;
  ...
		

Crossrefs

Row sums are A006024.
Cf. A102579, A102596, A368987 (unlabeled).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(p,t) = {prod(i=2, #p, prod(j=1, i-1, t(p[i]*p[j])))}
    row(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + x^w)); Vecrev(s)}

Formula

Sum_{k>=0} 2^k*T(n,k) = A102596(n).
Sum_{k>=0} 3^k*T(n,k) = A102579(n).

A102596 Number of n-node labeled oriented graphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 2, 14, 396, 34748, 9281784, 7454765736, 17754713559696, 124916711439302928, 2595833697671445752352, 159598823327470451154007008, 29105164897431888477084463394496, 15784299558159474546700473641953798080, 25515085085573055700779453120708128026732416
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 22 2005

Keywords

Crossrefs

Cf. A006024, A102579 (digraphs), A102597 (connected), A102599, A369283.

Programs

  • PARI
    \\ permcount, edges defined in A369283.
    a(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + 2^w)); s} \\ Andrew Howroyd, Jan 20 2024

Formula

a(n) = Sum_{k>=0} 2^k * A369283(n,k). - Andrew Howroyd, Jan 20 2024

Extensions

a(0)=1 prepended and a(13) onwards from Andrew Howroyd, Jan 20 2024

A102580 Number of n-node labeled connected digraphs whose underlying graphs are mating graphs, cf. A006024.

Original entry on oeis.org

1, 1, 3, 27, 2025, 566190, 625831920, 2774192113350, 49208948146347570, 3472093007861482740960, 971461407155771477392032600, 1076446082528185671934674675023160, 4723701978908086606944984284949329285400, 82155133922723780601138029235949809990647219040
Offset: 0

Views

Author

Goran Kilibarda, Zoran Maksimovic, Vladeta Jovovic, Jan 21 2005

Keywords

Crossrefs

Cf. A006024, A102579 (not necessarily connected), A102597 (oriented), A102598 (unlabeled), A369283.

Programs

  • PARI
    \\ b(n) is A102579(n); permcount, edges defined in A369283.
    b(n) = {my(s=0); forpart(p=n, s += permcount(p)*(-1)^(n-#p)*edges(p, w->1 + 3^w)); s}
    seq(n) = {Vec(serlaplace(1 + x + log(sum(k=0, n, b(k)*x^k/k!, O(x*x^n))/(1 + x))))} \\ Andrew Howroyd, Jan 20 2024

Formula

E.g.f.: 1 + x + log(B(x)/(1 + x)) where B(x) is the e.g.f. of A102579. - Andrew Howroyd, Jan 20 2024

Extensions

a(0)=1 prepended and a(12) onwards from Andrew Howroyd, Jan 20 2024
Showing 1-3 of 3 results.