cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A307316 Number of unlabeled leafless loopless multigraphs with n edges.

Original entry on oeis.org

1, 0, 1, 2, 5, 11, 34, 87, 279, 897, 3129, 11458, 44576, 181071, 770237, 3407332, 15641159, 74270464, 364014060, 1837689540, 9540175803, 50853577811, 277976050975, 1556372791835, 8916484189284, 52220798342832, 312389223102731, 1907282708797831, 11876576923779692, 75376983176576501, 487295169002095058
Offset: 0

Views

Author

Patrick T. Komiske, Apr 02 2019

Keywords

Comments

Multigraphs with no loops and no vertices of degree 1.
The initial terms were computed with Nauty.
Conjecturally, the asymptotic number of completely symmetric polynomials of degree n up to momentum conservation in the limit as the number of particles increases.

Examples

			For n=4 the multigraphs (as sets of edges) are {(0,1),(1,2),(2,3),(3,0)}, {(0,1),(0,1),(1,2),(2,0)}, {(0,1),(0,1),(0,1),(0,1)}, {(0,1),(0,1),(1,2),(1,2)}, and {(0,1),(0,1),(2,3),(2,3)}.
		

Crossrefs

Conjecturally the same as A226919. Possibly also A254342.
Row sums of A370063.
Cf. A050535, A307317 (connected), A369286, A369290 (simple graphs), A369927.

Programs

  • PARI
    \\ See also A370063 for a more efficient program.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])/edges(p, w->1-x^w + O(x*x^n))); Vec(s/(2*n)!)} \\ Andrew Howroyd, Feb 01 2024

Formula

Euler transform of A307317.

Extensions

a(0)=1 prepended and a(17) onwards from Andrew Howroyd, Feb 01 2024

A342556 a(n) is the number of unlabeled connected graphs without endpoints with n edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 9, 22, 60, 164, 494, 1624, 5602, 20600, 79813, 323806, 1371025, 6034105, 27513424, 129641411, 629862824, 3149541908, 16183100922, 85328280263, 461123500894, 2551342936264, 14438734591483, 83506198920054, 493163726073210, 2971858162771887
Offset: 0

Views

Author

Hugo Pfoertner, May 21 2021

Keywords

Crossrefs

Row sums of A342557.
Cf. A004108 (n vertices), A307317 (multigraph), A369290 (not necessarily connected).

Formula

Inverse Euler transform of A369290.

Extensions

a(0)=1 prepended and a(25) onwards from Andrew Howroyd, Feb 01 2024

A369932 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 3, 5, 2, 0, 0, 0, 0, 2, 11, 9, 3, 0, 0, 0, 0, 1, 15, 32, 16, 4, 0, 0, 0, 0, 1, 12, 63, 76, 25, 5, 0, 0, 0, 0, 0, 8, 89, 234, 162, 39, 6, 0, 0, 0, 0, 0, 5, 97, 515, 730, 332, 60, 9
Offset: 1

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Examples

			Triangle begins:
  0;
  0, 0;
  0, 0, 1;
  0, 0, 0, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 1, 3,  2;
  0, 0, 0, 0, 3,  5,  2;
  0, 0, 0, 0, 2, 11,  9,  3;
  0, 0, 0, 0, 1, 15, 32, 16,  4;
  0, 0, 0, 0, 1, 12, 63, 76, 25, 5;
  ...
		

Crossrefs

Row sums are A369290.
Column sums are A261919.
Main diagonal is A008483.
Cf. A342557 (connected), A123551 (without endpoints).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
    T(n)={my(r=Vec(substvec(G(n),[x,y],[y,x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y),i)) }
    { my(A=T(12)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A123551(k,n) - A123551(k-1,n).
Showing 1-3 of 3 results.