cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369286 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no constant parts or vertices that appear in only one part, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 5, 2, 0, 0, 6, 3, 0, 0, 16, 16, 5, 0, 0, 22, 44, 13, 0, 0, 45, 135, 82, 11, 0, 0, 64, 338, 301, 52, 0, 0, 119, 880, 1233, 382, 34, 0, 0, 171, 2024, 4090, 1936, 211, 0, 0, 294, 4674, 13474, 9500, 1843, 87, 0, 0, 433, 10191, 40532, 40817, 11778, 873
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2024

Keywords

Comments

T(n,k) is the number of nonnegative integer matrices with sum of values n, k rows and every row and column having at least two nonzero entries up to permutation of rows and columns.

Examples

			Triangle begins:
  1;
  0;
  0, 0;
  0, 0;
  0, 0,   1;
  0, 0,   1;
  0, 0,   5,    2;
  0, 0,   6,    3;
  0, 0,  16,   16,    5;
  0, 0,  22,   44,   13;
  0, 0,  45,  135,   82,   11;
  0, 0,  64,  338,  301,   52;
  0, 0, 119,  880, 1233,  382,  34;
  0, 0, 171, 2024, 4090, 1936, 211;
  ...
The T(6,2) = 5 multiset partitions are:
  {{1,1,1,2}, {1,2}},
  {{1,1,2,2}, {1,2}},
  {{1,1,2}, {1,1,2}},
  {{1,1,2}, {1,2,2}},
  {{1,2,3}, {1,2,3}}.
The corresponding T(6,2) = 5 matrices are:
  [3 1]  [2 2]  [2 1]  [2 1]  [1 1 1]
  [1 1]  [1 1]  [2 1]  [1 2]  [1 1 1]
The T(6,3) = 2 matrices are:
  [1 1]  [1 1 0]
  [1 1]  [1 0 1]
  [1 1]  [0 1 1]
		

Crossrefs

Row sums are A321760.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); eta(x + O(x*x^k))*(1 + x*Ser(K(q,t,k))) + x*(1-c)/(1-x) - 1}
    G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
    T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
    { my(A=T(15)); for(i=1, #A, print(A[i])) }

Formula

T(2*n,n) = A307316(n).

A369290 Number of unlabeled simple graphs without endpoints with n edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 6, 10, 25, 68, 182, 538, 1748, 5935, 21585, 82904, 334037, 1406934, 6167455, 28033776, 131770437, 638956188, 3189940453, 16369201031, 86214798929, 465480395911, 2573390342437, 14553415319929, 84118459655982, 496514424803358, 2990633679878654
Offset: 0

Views

Author

Andrew Howroyd, Jan 30 2024

Keywords

Crossrefs

Row sums of A369932.
Cf. A004110 (n vertices), A307316 (multigraph), A342556 (connected).

Programs

  • PARI
    \\ See also A369932 for a more efficient program.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])*edges(p, w->1+x^w + O(x*x^n))); Vec(s/(2*n)!)}

Formula

Euler transform of A342556.

A307317 Number of unlabeled connected leafless loopless multigraphs with n edges.

Original entry on oeis.org

1, 0, 1, 2, 4, 9, 26, 68, 217, 718, 2553, 9574, 38005, 157306, 679682, 3047699, 14150278, 67844305, 335262807, 1704500229, 8902528600, 47704608478, 261960998230, 1472618327415, 8466681788462, 49743177379613, 298407523833717, 1826531247381194, 11399711132242500, 72500116125222893, 469578870456459042
Offset: 0

Views

Author

Eric M. Metodiev, Apr 02 2019

Keywords

Comments

Connected multigraphs with no loops and no vertices of degree 1.
The initial terms were computed with Nauty.

Examples

			For n=3 the multigraphs (as sets of edges) are {(0,1),(0,1),(0,1)} and {(0,1),(0,2),(1,2)}.
		

Crossrefs

Cf. A076864, A307316 (not necessarily connected), A342556 (simple graphs).

Formula

Inverse Euler transform of A307316.

Extensions

a(0)=1 prepended and a(17) onwards from Andrew Howroyd, Feb 01 2024

A369927 Triangle read by rows: T(n,k) is the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts and no singletons or endpoints, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 3, 5, 0, 0, 0, 3, 5, 0, 0, 1, 5, 17, 11, 0, 0, 0, 4, 20, 21, 0, 0, 1, 9, 53, 80, 34, 0, 0, 0, 6, 60, 167, 91, 0, 0, 1, 11, 121, 418, 410, 87, 0, 0, 0, 10, 149, 816, 1189, 402
Offset: 0

Views

Author

Andrew Howroyd, Feb 06 2024

Keywords

Comments

A singleton is a part of size 1. An endpoint is a vertex that appears in only one part.
T(n,k) is the number of binary matrices with n 1's, k rows and every row and column sum at least two up to permutation of rows and columns.

Examples

			Triangle begins:
  1;
  0;
  0, 0;
  0, 0;
  0, 0, 1;
  0, 0, 0;
  0, 0, 1,  2;
  0, 0, 0,  1;
  0, 0, 1,  3,   5;
  0, 0, 0,  3,   5;
  0, 0, 1,  5,  17,  11;
  0, 0, 0,  4,  20,  21;
  0, 0, 1,  9,  53,  80,   34;
  0, 0, 0,  6,  60, 167,   91;
  0, 0, 1, 11, 121, 418,  410,  87;
  0, 0, 0, 10, 149, 816, 1189, 402;
  ...
The T(4,2) = 1 partition is {{1,2},{1,2}}.
The corresponding matrix is:
   [1 1]
   [1 1]
The T(8,3) = 3 matrices are:
   [1 1 1]  [1 1 1 0]  [1 1 1 1]
   [1 1 1]  [1 1 0 1]  [1 1 0 0]
   [1 1 0]  [0 0 1 1]  [0 0 1 1]
		

Crossrefs

Row sums are A369926.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g}
    H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); K(q, t, k) - c*x}
    G(n, y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
    T(n)={my(v=Vec(G(n, 'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
    { my(A=T(15)); for(i=1, #A, print(A[i])) }

Formula

T(2*n,n) = A307316(n).

A370063 Triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs without endpoints with n edges covering k vertices, 0 <= k <= n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 5, 2, 0, 0, 1, 5, 14, 10, 4, 0, 0, 1, 6, 25, 33, 18, 4, 0, 0, 1, 8, 46, 96, 90, 31, 7, 0, 0, 1, 10, 75, 227, 330, 194, 52, 8, 0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12, 0, 0, 1, 14, 173, 982, 2847, 3908, 2591, 800, 128, 14
Offset: 0

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

An endpoint is a vertex that appears in only one edge. Equivalently, the degree of every vertex >= 2.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 0, 1;
  0, 0, 1,  1;
  0, 0, 1,  2,   2;
  0, 0, 1,  3,   5,   2;
  0, 0, 1,  5,  14,  10,    4;
  0, 0, 1,  6,  25,  33,   18,   4;
  0, 0, 1,  8,  46,  96,   90,  31,   7;
  0, 0, 1, 10,  75, 227,  330, 194,  52,  8;
  0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12;
  ...
		

Crossrefs

Row sums are A307316.
Main diagonal is A002865.
Cf. A369932.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) / edges(p, w->1-y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
    T(n)={my(r=Vec(substvec(G(n), [x, y], [y, x]))); vector(#r, i, Vecrev(Pol(r[i]), i)) }
    { my(A=T(10)); for(i=1, #A, print(A[i])) }
Showing 1-5 of 5 results.