A369286
Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no constant parts or vertices that appear in only one part, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 5, 2, 0, 0, 6, 3, 0, 0, 16, 16, 5, 0, 0, 22, 44, 13, 0, 0, 45, 135, 82, 11, 0, 0, 64, 338, 301, 52, 0, 0, 119, 880, 1233, 382, 34, 0, 0, 171, 2024, 4090, 1936, 211, 0, 0, 294, 4674, 13474, 9500, 1843, 87, 0, 0, 433, 10191, 40532, 40817, 11778, 873
Offset: 0
Triangle begins:
1;
0;
0, 0;
0, 0;
0, 0, 1;
0, 0, 1;
0, 0, 5, 2;
0, 0, 6, 3;
0, 0, 16, 16, 5;
0, 0, 22, 44, 13;
0, 0, 45, 135, 82, 11;
0, 0, 64, 338, 301, 52;
0, 0, 119, 880, 1233, 382, 34;
0, 0, 171, 2024, 4090, 1936, 211;
...
The T(6,2) = 5 multiset partitions are:
{{1,1,1,2}, {1,2}},
{{1,1,2,2}, {1,2}},
{{1,1,2}, {1,1,2}},
{{1,1,2}, {1,2,2}},
{{1,2,3}, {1,2,3}}.
The corresponding T(6,2) = 5 matrices are:
[3 1] [2 2] [2 1] [2 1] [1 1 1]
[1 1] [1 1] [2 1] [1 2] [1 1 1]
The T(6,3) = 2 matrices are:
[1 1] [1 1 0]
[1 1] [1 0 1]
[1 1] [0 1 1]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); eta(x + O(x*x^k))*(1 + x*Ser(K(q,t,k))) + x*(1-c)/(1-x) - 1}
G(n,y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
T(n)={my(v=Vec(G(n,'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
{ my(A=T(15)); for(i=1, #A, print(A[i])) }
A369290
Number of unlabeled simple graphs without endpoints with n edges.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 6, 10, 25, 68, 182, 538, 1748, 5935, 21585, 82904, 334037, 1406934, 6167455, 28033776, 131770437, 638956188, 3189940453, 16369201031, 86214798929, 465480395911, 2573390342437, 14553415319929, 84118459655982, 496514424803358, 2990633679878654
Offset: 0
-
\\ See also A369932 for a more efficient program.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])*edges(p, w->1+x^w + O(x*x^n))); Vec(s/(2*n)!)}
A307317
Number of unlabeled connected leafless loopless multigraphs with n edges.
Original entry on oeis.org
1, 0, 1, 2, 4, 9, 26, 68, 217, 718, 2553, 9574, 38005, 157306, 679682, 3047699, 14150278, 67844305, 335262807, 1704500229, 8902528600, 47704608478, 261960998230, 1472618327415, 8466681788462, 49743177379613, 298407523833717, 1826531247381194, 11399711132242500, 72500116125222893, 469578870456459042
Offset: 0
For n=3 the multigraphs (as sets of edges) are {(0,1),(0,1),(0,1)} and {(0,1),(0,2),(1,2)}.
A369927
Triangle read by rows: T(n,k) is the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts and no singletons or endpoints, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 3, 5, 0, 0, 0, 3, 5, 0, 0, 1, 5, 17, 11, 0, 0, 0, 4, 20, 21, 0, 0, 1, 9, 53, 80, 34, 0, 0, 0, 6, 60, 167, 91, 0, 0, 1, 11, 121, 418, 410, 87, 0, 0, 0, 10, 149, 816, 1189, 402
Offset: 0
Triangle begins:
1;
0;
0, 0;
0, 0;
0, 0, 1;
0, 0, 0;
0, 0, 1, 2;
0, 0, 0, 1;
0, 0, 1, 3, 5;
0, 0, 0, 3, 5;
0, 0, 1, 5, 17, 11;
0, 0, 0, 4, 20, 21;
0, 0, 1, 9, 53, 80, 34;
0, 0, 0, 6, 60, 167, 91;
0, 0, 1, 11, 121, 418, 410, 87;
0, 0, 0, 10, 149, 816, 1189, 402;
...
The T(4,2) = 1 partition is {{1,2},{1,2}}.
The corresponding matrix is:
[1 1]
[1 1]
The T(8,3) = 3 matrices are:
[1 1 1] [1 1 1 0] [1 1 1 1]
[1 1 1] [1 1 0 1] [1 1 0 0]
[1 1 0] [0 0 1 1] [0 0 1 1]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g}
H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); K(q, t, k) - c*x}
G(n, y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
T(n)={my(v=Vec(G(n, 'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
{ my(A=T(15)); for(i=1, #A, print(A[i])) }
A370063
Triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs without endpoints with n edges covering k vertices, 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 5, 2, 0, 0, 1, 5, 14, 10, 4, 0, 0, 1, 6, 25, 33, 18, 4, 0, 0, 1, 8, 46, 96, 90, 31, 7, 0, 0, 1, 10, 75, 227, 330, 194, 52, 8, 0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12, 0, 0, 1, 14, 173, 982, 2847, 3908, 2591, 800, 128, 14
Offset: 0
Triangle begins:
1;
0, 0;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 2, 2;
0, 0, 1, 3, 5, 2;
0, 0, 1, 5, 14, 10, 4;
0, 0, 1, 6, 25, 33, 18, 4;
0, 0, 1, 8, 46, 96, 90, 31, 7;
0, 0, 1, 10, 75, 227, 330, 194, 52, 8;
0, 0, 1, 12, 117, 494, 1033, 962, 416, 82, 12;
...
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
G(n) = {my(s=O(x*x^n)); sum(k=0, n, forpart(p=k, s+=permcount(p) / edges(p, w->1-y^w+O(y*y^n)) * x^k * prod(i=1, #p, 1-(y*x)^p[i], 1+O(x^(n-k+1))) / k!)); s*(1-x)}
T(n)={my(r=Vec(substvec(G(n), [x, y], [y, x]))); vector(#r, i, Vecrev(Pol(r[i]), i)) }
{ my(A=T(10)); for(i=1, #A, print(A[i])) }
Showing 1-5 of 5 results.
Comments