cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123551 Triangle read by rows: T(n,k) gives number of unlabeled graphs without endpoints on n nodes and k edges, (n >= 0, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 4, 3, 2, 1, 1, 1, 0, 0, 1, 1, 2, 6, 8, 13, 16, 13, 8, 5, 2, 1, 1, 1, 0, 0, 1, 1, 2, 6, 10, 22, 48, 76, 97, 102, 84, 60, 39, 20, 10, 5, 2, 1, 1, 1, 0, 0, 1, 1, 2, 6, 10, 25, 64, 152, 331, 617, 930, 1173, 1253, 1140
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 1;
[2] 1, 0;
[3] 1, 0, 0, 1;
[4] 1, 0, 0, 1, 1, 1, 1;
[5] 1, 0, 0, 1, 1, 2, 4, 3,  2,  1,  1;
[6] 1, 0, 0, 1, 1, 2, 6, 8, 13, 16, 13, 8, 5, 2, 1, 1;
  ...
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

Row sums are A004110.
Cf. A008406, A240168, A369928 (labeled).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    row(n) = {my(s=0); sum(k=0, n, forpart(p=k, s+=permcount(p) * edges(p, w->1+y^w) * y^(n-k)*polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); Vecrev(s, binomial(n,2)+1)}
    { for(n=0, 6, print(row(n))) } \\ Andrew Howroyd, Feb 07 2024

Formula

T(n,k) = A008406(n,k) - A240168(n,k). - Andrew Howroyd, Apr 16 2021

A369931 Triangle read by rows: T(n,k) is the number of labeled simple graphs with n edges and k vertices and without endpoints or isolated vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 6, 12, 0, 0, 0, 1, 85, 70, 0, 0, 0, 0, 100, 990, 465, 0, 0, 0, 0, 45, 2805, 11550, 3507, 0, 0, 0, 0, 10, 3595, 59990, 140420, 30016, 0, 0, 0, 0, 1, 2697, 147441, 1174670, 1802682, 286884, 0, 0, 0, 0, 0, 1335, 222516, 4710300, 22467312, 24556140, 3026655
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

T(n,k) is the number of traceless symmetric binary matrices with 2n 1's and k rows and at least two 1's in every row.

Examples

			Triangle begins:
  0;
  0, 0;
  0, 0, 1;
  0, 0, 0, 3;
  0, 0, 0, 6,  12;
  0, 0, 0, 1,  85,   70;
  0, 0, 0, 0, 100,  990,    465;
  0, 0, 0, 0,  45, 2805,  11550,    3507;
  0, 0, 0, 0,  10, 3595,  59990,  140420,   30016;
  0, 0, 0, 0,   1, 2697, 147441, 1174670, 1802682, 286884;
  ...
The T(3,3) = 1 matrix is:
  [0 1 1]
  [1 0 1]
  [1 1 0]
The T(4,4) = 3 matrices are:
  [0 0 1 1]  [0 1 0 1]  [0 1 1 0]
  [0 0 1 1]  [1 0 1 0]  [1 0 0 1]
  [1 1 0 0]  [0 1 0 1]  [1 0 0 1]
  [1 1 0 0]  [1 0 1 0]  [0 1 1 0]
		

Crossrefs

Row sums are A370059.
Column sums are A100743.
Main diagonal is A001205.
Cf. A369928, A369932 (unlabeled).

Programs

  • PARI
    G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)}
    T(n)={my(r=Vec(substvec(serlaplace(G(n)), [x, y], [y, x]))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y), i))}

Formula

T(n,k) = k!*[x^k][y^n] exp(y*x^2/2 - x) * Sum_{j>=0} (1 + y)^binomial(j, 2)*(x/exp(y*x))^j/j!.
Showing 1-2 of 2 results.