cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123592 Primes of the form p^2 + q^2 + r^2, where p,q,r are primes.

Original entry on oeis.org

17, 43, 59, 67, 83, 107, 139, 179, 227, 251, 307, 347, 379, 419, 467, 491, 547, 563, 587, 659, 827, 859, 971, 1019, 1091, 1259, 1427, 1499, 1667, 1699, 1811, 1867, 1907, 1931, 1979, 2027, 2243, 2267, 2339, 2531, 2579, 2699, 2819, 2843, 2939, 3347, 3371, 3499
Offset: 1

Views

Author

Alexander Adamchuk, Nov 14 2006

Keywords

Comments

a(n) is a subset of A085317(n) = {3, 11, 17, 19, 29, 41, 43, 53, 59, 61, 67, 73, 83, ...} Primes of form x^2 + y^2 + z^2. All terms except a(1) = 17 are congruent to 3 mod 8.
If neither p, q, nor r is 3, then p^2 + q^2 + r^2 is always divisible by 3. Therefore all terms in a(n) have at least one 3^2 in their summation. - Richard R. Forberg, Aug 29 2013

Examples

			a(1) = 17 because 17 = 2^2 + 2^2 + 3^2 is prime and 2^2 + 2^2 + 2^2 = 12 is composite.
		

Crossrefs

Cf. A085317 (primes of form x^2 + y^2 + z^2).

Programs

  • Mathematica
    With[{nn=50},Take[Union[Select[Total/@Tuples[Prime[Range[nn/2]]^2, 3], PrimeQ]],nn]] (* Harvey P. Dale, Aug 26 2015 *)