A098735 Numerator of sum of all matrix elements M(i,j) = i^2 + j^2 (i,j = 1..n) divided by n!.
2, 10, 14, 10, 55, 91, 7, 17, 19, 11, 253, 13, 13, 29, 31, 17, 17, 703, 19, 41, 43, 23, 1081, 1, 1, 53, 1, 29, 1711, 1891, 31, 1, 67, 1, 71, 2701, 37, 1, 79, 41, 3403, 43, 43, 89, 1, 47, 47, 97, 1, 101, 103, 53, 5671, 109, 1, 113, 1, 59, 59, 61, 61, 1, 127, 1, 131, 67, 67, 137
Offset: 1
Keywords
Examples
1/n!*A098077(n) begins 2, 10, 14, 10, 55/12, 91/60, 7/18, 17/210, 19/1344, ... So a(6) = 91.
Crossrefs
Programs
-
Mathematica
Numerator[Table[1/n!*Sum[Sum[(i^2+j^2), {i, 1, n}], {j, 1, n}], {n, 1, 100}]] Table[ Numerator[ n*(n+1)*(2n+1)/3/(n-1)! ], {n,1,100} ] (* Alexander Adamchuk, Nov 15 2006 *)
-
PARI
a(n) = numerator(sum(i=1, n, sum(j=1, n, i^2 + j^2))/n!); \\ Michel Marcus, May 31 2022
Formula
a(n) = numerator(A098077(n)/n!).
a(n) = numerator(n*(n+1)*(2n+1)/3/(n-1)!). - Alexander Adamchuk, Nov 15 2006
Comments