A123627 Smallest prime q such that (q^p+1)/(q+1) is prime, where p = prime(n); or 0 if no such prime q exists.
0, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 19, 61, 2, 7, 839, 89, 2, 5, 409, 571, 2, 809, 227, 317, 2, 5, 79, 23, 4073, 2, 281, 89, 739, 1427, 727, 19, 19, 2, 281, 11, 2143, 2, 1013, 4259, 2, 661, 1879, 401, 5, 4099, 1579, 137, 43, 487, 307, 547, 1709, 43, 3, 463, 2161, 353, 443, 2
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..240
Programs
-
Maple
f:= proc(n) local p,q; p:= ithprime(n); q:= 1; do q:= nextprime(q); if isprime((q^p+1)/(q+1)) then return q fi od end proc: f(1):= 0: map(f, [$1..70]); # Robert Israel, Jul 31 2019
-
Mathematica
a(1) = 0, for n>1 Do[p=Prime[k]; n=1; q=Prime[n]; cp=(q^p+1)/(q+1); While[ !PrimeQ[cp], n=n+1; q=Prime[n]; cp=(q^p+1)/(q+1)]; Print[q], {k, 2, 61}] Do[p=Prime[k]; n=1; q=Prime[n]; cp=(q^p+1)/(q+1); While[ !PrimeQ[cp], n=n+1; q=Prime[n]; cp=(q^p+1)/(q+1)]; Print[{k,q}], {k, 1, 134}] spq[n_]:=Module[{p=Prime[n],q=2},While[!PrimeQ[(q^p+1)/(q+1)],q=NextPrime[ q]]; q]; Join[{0},Array[spq,70,2]] (* Harvey P. Dale, Mar 23 2019 *)
Formula
A123628(n) = (a(n)^prime(n) + 1) / (a(n) + 1).
Comments