A123629 Expansion of b(q^2) * c(q^6) / (b(q) * c(q^3)) in powers of q where b(), c() are cubic AGM theta functions.
1, 3, 6, 11, 18, 30, 48, 75, 114, 170, 252, 366, 526, 744, 1044, 1451, 1998, 2730, 3700, 4986, 6672, 8876, 11736, 15438, 20207, 26322, 34134, 44072, 56682, 72612, 92680, 117867, 149400, 188758, 237744, 298554, 373838, 466836, 581412, 722266, 895014
Offset: 1
Keywords
Examples
G.f. = q + 3*q^2 + 6*q^3 + 11*q^4 + 18*q^5 + 30*q^6 + 48*q^7 + 75*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Programs
-
Mathematica
nmax=60; CoefficientList[Series[Product[(1+x^k)^3 * (1+x^(9*k))^3 / (1+x^(3*k))^2,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 10 2015 *) A123629[n_] := SeriesCoefficient[q*(QPochhammer[q^3]/QPochhammer[q^6])^2*(QPochhammer[q^2]*QPochhammer[q^18]/(QPochhammer[q]*QPochhammer[q^9] ))^3, {q, 0, n}]; Table[A123629[n], {n, 0, 50}] (* G. C. Greubel, Oct 09 2017 *)
-
PARI
{a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x^6 + A))^2 * (eta(x^2 + A) * eta(x^18 + A) / (eta(x + A) * eta(x^9 + A)))^3, n))};
Formula
Expansion of (eta(q^3) / eta(q^6))^2 * (eta(q^2) * eta(q^18) / (eta(q) * eta(q^9)))^3 in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - u*(6*v + 4*v^2).
Euler transform of period 18 sequence [ 3, 0, 1, 0, 3, 0, 3, 0, 4, 0, 3, 0, 3, 0, 1, 0, 3, 0, ...].
Convolution inverse is A123676. - Michael Somos, Feb 19 2015
Expansion of q * chi(-q^3)^2 / (chi(-q) * chi(-q^9))^3 in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Feb 19 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123676. - Michael Somos, Feb 19 2015
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(11/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 10 2015
Extensions
Typo in xrefs corrected by Vaclav Kotesovec, Oct 10 2015
Comments