A123630 Expansion of q * (chi(-q^3) * chi(-q^5)) / (chi(-q) * chi(-q^15))^2 in powers of q where chi() is a Ramanujan theta function.
1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 106, 137, 175, 222, 280, 352, 439, 546, 676, 834, 1024, 1253, 1528, 1857, 2250, 2718, 3276, 3936, 4718, 5640, 6728, 8006, 9507, 11266, 13324, 15726, 18526, 21786, 25574, 29970, 35064, 40961, 47774, 55638
Offset: 1
Keywords
Examples
G.f. = q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 10*q^6 + 14*q^7 + 20*q^8 + 27*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
f[q_] := QPochhammer[-q, q^2]; A123630[n_] := SeriesCoefficient[q*(f[-q^3]*f[-q^5])/(f[-q]*f[-q^15])^2, {q, 0, n}]; Table[A123630[n], {n, 0, 50}] (* G. C. Greubel, Oct 17 2017 *)
-
PARI
{a(n) = local(A); if( n<1, 0, n--; A = x*O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A)^2 / (eta(x + A)^2 * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A)^2), n))};
Formula
Euler transform of period 30 sequence [ 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 -v - u*v * (4 + 2*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133098.
G.f.: x * Product_{k>0} (1 + x^k) * (1 + x^(15*k)) * P(30, x^k) where P(n, x) is n th cyclotomic polynomial.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(7/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Comments