cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123630 Expansion of q * (chi(-q^3) * chi(-q^5)) / (chi(-q) * chi(-q^15))^2 in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 106, 137, 175, 222, 280, 352, 439, 546, 676, 834, 1024, 1253, 1528, 1857, 2250, 2718, 3276, 3936, 4718, 5640, 6728, 8006, 9507, 11266, 13324, 15726, 18526, 21786, 25574, 29970, 35064, 40961, 47774, 55638
Offset: 1

Views

Author

Michael Somos, Oct 03 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 10*q^6 + 14*q^7 + 20*q^8 + 27*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    f[q_] := QPochhammer[-q, q^2]; A123630[n_] := SeriesCoefficient[q*(f[-q^3]*f[-q^5])/(f[-q]*f[-q^15])^2, {q, 0, n}]; Table[A123630[n], {n, 0, 50}] (* G. C. Greubel, Oct 17 2017 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x*O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A)^2 / (eta(x + A)^2 * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A)^2), n))};

Formula

Euler transform of period 30 sequence [ 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 -v - u*v * (4 + 2*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133098.
G.f.: x * Product_{k>0} (1 + x^k) * (1 + x^(15*k)) * P(30, x^k) where P(n, x) is n th cyclotomic polynomial.
a(n) = A094023(n) unless n=0. Convolution inverse is A133098.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(7/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017