A123653 Expansion of (eta(q^2)eta(q^6)/(eta(q)eta(q^3)))^6 in powers of q.
1, 6, 21, 68, 198, 510, 1248, 2904, 6393, 13604, 28044, 55956, 108982, 207552, 386622, 707216, 1271970, 2250582, 3925780, 6757272, 11483232, 19290824, 32057352, 52722744, 85884503, 138644292, 221885805, 352241792, 554892894
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 40; Rest[CoefficientList[Series[x * Product[((1+x^k) * (1+x^(3*k)))^6, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
-
PARI
{a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^6+A)/eta(x+A)/eta(x^3+A))^6, n))}
Formula
Euler transform of period 6 sequence [ 6, 0, 12, 0, 6, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= u^2 -v*(1+12*u+64*u*v)
G.f.: x*(Product_{k>0} (1+x^k)*(1+x^(3k)))^6.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (64 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Convolution inverse of A121666. - Seiichi Manyama, Mar 30 2017
Comments