cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123653 Expansion of (eta(q^2)eta(q^6)/(eta(q)eta(q^3)))^6 in powers of q.

Original entry on oeis.org

1, 6, 21, 68, 198, 510, 1248, 2904, 6393, 13604, 28044, 55956, 108982, 207552, 386622, 707216, 1271970, 2250582, 3925780, 6757272, 11483232, 19290824, 32057352, 52722744, 85884503, 138644292, 221885805, 352241792, 554892894
Offset: 1

Views

Author

Michael Somos, Oct 04 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Expansion of q/(chi(-q)*chi(-q^3))^6 in powers of q where chi() is a Ramanujan theta function.

Programs

  • Mathematica
    nmax = 40; Rest[CoefficientList[Series[x * Product[((1+x^k) * (1+x^(3*k)))^6, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^6+A)/eta(x+A)/eta(x^3+A))^6, n))}

Formula

Euler transform of period 6 sequence [ 6, 0, 12, 0, 6, 0, ...].
G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= u^2 -v*(1+12*u+64*u*v)
G.f.: x*(Product_{k>0} (1+x^k)*(1+x^(3k)))^6.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (64 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Convolution inverse of A121666. - Seiichi Manyama, Mar 30 2017