cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123686 E.g.f.: (1-x^4)^(-1/2)*exp(x^2/(1-x^2))*BesselI(0,x^2/(x^2-1)) (since this is an even function, we do not give the intercalating 0's).

Original entry on oeis.org

1, 2, 54, 2460, 239190, 33124140, 6896500380, 1879519201560, 674900483206950, 300426422192196300, 164868151446145847700, 108046627817926248851400, 83890281074290204071858300, 75722368306901033144261835000
Offset: 0

Views

Author

Karol A. Penson, Oct 06 2006

Keywords

Comments

Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

Crossrefs

Programs

  • Maple
    G:=(1-x^4)^(-1/2)*exp(x^2/(1-x^2))*BesselI(0,x^2/(x^2-1)): Gser:=series(G,x=0,40): seq((2*n)!*coeff(Gser,x,2*n),n=0..15); # Emeric Deutsch, Oct 31 2006
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1 - x^4)^(-1/2)*Exp[x^2/(1 - x^2)]*BesselI[0, x^2/(x^2 - 1)], {x, 0, nmax}], x]*Range[0, nmax]!][[;; ;; 2 ]] (* G. C. Greubel, Oct 18 2017 *)

Formula

From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: n*a(n) = 2*(2*n - 1)*(3*n - 2)*a(n-1) + 4*(n-1)^2*(2*n - 3)*(2*n - 1)*(2*n + 1)*a(n-2) + 8*(n-2)^2*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-3) - 16*(n-3)^2*(n-2)^2*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-4).
a(n) ~ 2^(2*n - 3/4) * exp(2*sqrt(2*n) - 2*n -1) * n^(2*n - 1/4) / sqrt(Pi) * (1 + 91/(48*sqrt(2*n))). (End)

Extensions

More terms from Emeric Deutsch, Oct 31 2006