cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123690 Number of points in a square lattice covered by a circle of diameter n if the center of the circle is chosen such that the circle covers the maximum possible number of lattice points.

Original entry on oeis.org

2, 5, 9, 14, 22, 32, 41, 52, 69, 81, 97, 116, 137, 157, 180, 208, 231, 258, 293, 319, 351, 384, 421, 457, 495, 540, 578, 623, 667, 716, 761, 812, 861, 914, 973, 1025, 1085, 1142, 1201, 1268, 1328, 1396, 1460, 1528, 1597, 1669, 1745, 1816, 1893, 1976, 2053
Offset: 1

Views

Author

Hugo Pfoertner, Oct 09 2006, Feb 11 2007

Keywords

Comments

a(n) >= max(A053411(n), A053414(n), A053415(n)).
a(n) is an upper bound for the number of segments of a self avoiding path on the 2-dimensional square lattice such that the path fits into a circle of diameter n. A122224(n) <= a(n).

Examples

			a(1)=2: Circle with diameter 1 and center (0,0.5) covers 2 lattice points;
a(2)=5: Circle with diameter 2 and center (0,0) covers 5 lattice points;
a(3)=4: Circle with diameter 3 and center (0,0) covers 9 lattice points;
a(4)=14: Circle with diameter 4 and center (0.5,0.2) covers 14 lattice points.
		

Crossrefs

The corresponding sequences for the hexagonal lattice and the honeycomb net are A125852 and A127406, respectively.

Programs

  • Mathematica
    (* An exact program using the functions from A291259: *)
    Clear[a]; a[n_] := Module[{points, pairc, expcent, innerpoints, cn=Ceiling[n], allpairs},
    allpairs = Flatten[Table[{i, j}, {i, -cn, cn+1}, {j, -cn, cn+1}], 1];
    points = Select[allpairs, candidatePointQ[#, n]&];
    pairc = Select[Subsets[points, {2}], dd2@@#<=4n^2&];
    expcent = explorativeCenters[pairc, n];
    innerpoints = Count[allpairs, _?(innerPointQ[#, n]&)];
    Max[Table[Count[points, _?(dd2[#, center]<=n^2&)], {center, expcent}]] + innerpoints];
    Table[a[n/2], {n, 20}] (* Andrey Zabolotskiy, Feb 21 2018 *)

Extensions

a(21)-a(40) originally conjectured by Jean-François Alcover confirmed and moved to Data and more terms added by Andrey Zabolotskiy, Feb 21 2018