A125852
Number of points in a hexagonal lattice covered by a circular disk of diameter n if the center of the circle is chosen such that the disk covers the maximum possible number of lattice points.
Original entry on oeis.org
2, 7, 10, 19, 24, 37, 48, 61, 77, 94, 115, 134, 157, 187, 208, 241, 265, 301, 330, 367, 406, 444, 486, 527, 572, 617, 665, 721, 769, 825, 877, 935, 993, 1054, 1117, 1182, 1249, 1316, 1385, 1459, 1531, 1615, 1684, 1765, 1842, 1925, 2011, 2096, 2187, 2276
Offset: 1
A127406
Number of points in a 2-dimensional honeycomb net covered by a circular disk of diameter n if the center of the disk is chosen to maximize the number of net points covered by the disk.
Original entry on oeis.org
2, 6, 7, 13, 17, 25, 34, 42, 54, 64, 78, 90, 107, 126, 140, 163, 178, 204, 222, 246
Offset: 1
A346993
Record numbers of grid points in a square lattice covered by a continuously growing circular disk if the center of the disk is chosen to cover the maximum possible number of grid points.
Original entry on oeis.org
1, 2, 4, 5, 6, 7, 9, 12, 13, 14, 16, 17, 21, 22, 24, 26, 27, 28, 32, 33, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 52, 56, 57, 58, 59, 61, 62, 63, 64, 65, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 104, 112, 113
Offset: 1
Diameter Covered R^2 =
of disk grid (D/2)^2 =
n D points A346994(n)/A346995(n)
.
1 0.00000 1 0 / 1
2 1.00000 2 1 / 4
3 1.41421 4 1 / 2
4 2.00000 5 1 / 1
5 2.23607 6 5 / 4
6 2.50000 7 25 / 16
7 2.82843 9 2 / 1
8 3.16228 12 5 / 2
9 3.67696 13 169 / 50
10 3.80058 14 65 / 18
11 4.12311 16 17 / 4
12 4.33333 17 169 / 36
13 4.47214 21 5 / 1
A354704
T(w,h) is a lower bound for the maximum number of grid points in a square grid covered by an arbitrarily positioned and rotated rectangle of width w and height h, excluding the trivial case of an axis-parallel unshifted cover, where T(w,h) is a triangle read by rows.
Original entry on oeis.org
2, 3, 5, 5, 8, 13, 6, 10, 15, 18, 8, 12, 20, 24, 32, 9, 14, 23, 27, 36, 41, 10, 17, 25, 30, 40, 45, 53, 12, 19, 30, 36, 48, 54, 60, 72, 13, 21, 33, 39, 52, 59, 68, 78, 89, 15, 23, 38, 45, 60, 68, 75, 90, 98, 113, 16, 25, 40, 48, 64, 72, 81, 96, 105, 120, 128, 17, 28, 43, 52, 68, 77, 88, 102, 114, 128, 137, 149
Offset: 1
The triangle begins:
\ h 1 2 3 4 5 6 7 8 9 10 11 12
w \ ----------------------------------------------------
1 | 2; | | | | | | | | | | |
2 | 3, 5; | | | | | | | | | |
3 | 5, 8, 13; | | | | | | | | |
4 | 6, 10, 15, 18; | | | | | | | |
5 | 8, 12, 20, 24, 32; | | | | | | |
6 | 9, 14, 23, 27, 36, 41; | | | | | |
7 | 10, 17, 25, 30, 40, 45, 53; | | | | |
8 | 12, 19, 30, 36, 48, 54, 60, 72; | | | |
9 | 13, 21, 33, 39, 52, 59, 68, 78, 89; | | |
10 | 15, 23, 38, 45, 60, 68, 75, 90, 98, 113; | |
11 | 16, 25, 40, 48, 64, 72, 81, 96, 105, 120, 128; |
12 | 17, 28, 43, 52, 68, 77, 88, 102, 114, 128, 137, 149
Cf.
A123690 (similar problem with circular disks).
A123689
Number of points in a square lattice covered by a circle of diameter n if the center of the circle is chosen such that the circle covers the minimum possible number of lattice points.
Original entry on oeis.org
0, 2, 4, 10, 16, 26, 32, 46, 60, 74, 88, 108, 124, 146, 172, 194, 216, 248, 276, 308
Offset: 1
a(1)=0: Circle with diameter 1 with center (0.5,0.5) covers no lattice points; a(2)=2: Circle with diameter 2 with center (0,eps) covers 2 lattice points;
a(3)=4: Circle with diameter 3 with center (0.5,0.5) covers 4 lattice points.
The corresponding sequences for the hexagonal lattice and the honeycomb net are
A125851 and
A127405, respectively.
-
dx = 1/200; y0 = 0; (* To speed up computation, the step size dx is experimentally adjusted and the circle center is taken on the x-axis. *)
cnt[pts_, ctr_, r_] := Count[pts, pt_ /; Norm[pt - ctr] <= r];
a[n_] := Module[{r, pts, innerCnt, an, center}, r = n/2; pts = Select[ Flatten[ Table[{x, y}, {x, -r - 1, r + 1}, {y, -r - 1, r + 1}], 1], r - 1 <= Norm[#] <= r + 1 &]; innerCnt = Sum[If[Norm[{x, y}] < r - 1, 1, 0], {x, -r - 1, r + 1}, {y, -r - 1, r + 1}]; {an, center} = Table[{innerCnt + cnt[pts, {x, y0}, r], {x, y0}}, {x, -1/2, 1/2, dx}] // Sort // First; Print["a(", n, ") = ", an, ", center = ", center // InputForm]; an];
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 08 2018 *)
A346994
Numerators of the squared radii corresponding to circular disks covering record numbers of grid points A346993 of the square lattice.
Original entry on oeis.org
0, 1, 1, 1, 5, 25, 2, 5, 169, 65, 17, 169, 5, 25, 13, 29, 5525, 125, 17, 481, 10, 45, 205, 19721, 1189, 25, 13, 338, 29725, 697, 29, 65, 17, 1105, 3445, 18, 4453, 40885, 4625, 481, 20, 85, 12505, 2125, 200, 89, 45, 7921, 425, 89725, 93925, 2405, 2465, 10201, 98345
Offset: 1
0/1, 1/4, 1/2, 1/1, 5/4, 25/16, 2/1, 5/2, 169/50, 65/18, 17/4, 169/36, ...
For detailed examples see A346993 and the linked pdf.
The corresponding denominators are
A346995.
A346995
Denominators of the squared radii corresponding to circular disks covering record numbers of grid points A346993 of the square lattice.
Original entry on oeis.org
1, 4, 2, 1, 4, 16, 1, 2, 50, 18, 4, 36, 1, 4, 2, 4, 722, 16, 2, 50, 1, 4, 18, 1682, 100, 2, 1, 25, 2178, 50, 2, 4, 1, 64, 196, 1, 242, 2178, 242, 25, 1, 4, 578, 98, 9, 4, 2, 338, 18, 3698, 3844, 98, 98, 400, 3844
Offset: 1
0/1, 1/4, 1/2, 1/1, 5/4, 25/16, 2/1, 5/2, 169/50, 65/18, 17/4, 169/36, ...
For detailed examples see A346993 and the linked pdf.
The corresponding numerators are
A346994.
A295344
Maximum number of lattice points inside and on a circle of radius n.
Original entry on oeis.org
1, 5, 14, 32, 52, 81, 116, 157, 208, 258, 319, 384, 457, 540, 623, 716, 812, 914, 1025, 1142, 1268, 1396, 1528, 1669, 1816, 1976, 2131, 2300, 2472, 2650, 2836, 3028, 3228, 3436, 3644, 3859, 4080, 4314, 4548, 4792, 5038, 5289, 5555, 5818, 6092, 6376, 6668, 6952
Offset: 0
For a circle centered at the point (x, y) = (1/2, 1/4) with radius 2, there are 14 lattice points inside and on the circle.
.
. Center # Pts in/
. x y Radius on circle
. ----- ----- ------ ---------
. 0 0 1 5
. 1/2 1/4 2 14
. 1/2 1/2 3 32
. 1/2 1/2 4 52
. 0 0 5 81
. 1/2 1/3 6 116
. 2/5 1/5 7 157
. 1/2 1/2 8 208
. 1/2 2/9 9 258
. 20/47 19/56 10 319
. 1/2 1/2 11 384
. 11/23 7/20 12 457
. 1/2 1/2 13 540
. 10/21 3/13 14 623
. 1/2 1/2 15 716
. 1/2 1/2 16 812
. 2/5 2/5 17 914
. 3/8 5/14 18 1025
. 1/2 1/6 19 1142
. 9/19 8/17 20 1268
- B. R. Srinivasan, Lattice Points in a Circle, Proc. Nat. Inst. Sci. India, Part A, 29 (1963), pp. 332-346.
-
L=List([]); for(n=0, 47, if(n>0, j=5, j=1); g=0; h=0; f=ceil(Pi*n^2); for(d=2, floor(f/2), for(c=1, floor(d/2), if(gcd(c, d)==1, for(e=d, d+1, if(e/f<=1/2, a=c/d; b=e/f; if(a+b>=1/2, t=0; for(x=-n, n+1, for(y=-n, n+1, z=(a-x)^2+(b-y)^2; if(z<=n^2,t++))); if(t>j, j=t; if(a>=b, g=a; h=b, g=b; h=a)))))))); print("a("n") = "j", the center of the circle is at point ("g", "h")."); listput(L, j)); print(); print(Vec(L));
A386538
a(n) is the maximum possible area of a polygon within a circle of radius n, where both the center and the vertices lie on points of a unit square grid.
Original entry on oeis.org
0, 2, 8, 24, 42, 74, 104, 138, 186, 240, 304, 362, 424, 512, 594, 690, 776, 880, 986, 1104, 1232, 1346, 1490, 1624, 1762, 1930, 2088, 2256, 2418, 2594, 2784, 2962, 3170, 3368, 3584, 3810, 4008, 4248, 4466, 4730, 4976, 5210, 5474, 5736, 6024, 6306, 6570, 6864, 7154
Offset: 0
See linked illustration of the term a(4) = 42.
-
A386538:=proc(n)
local x,y,p,s;
p:=4*n;
s:={};
for x to n do
y:=floor(sqrt(n^2-x^2));
p:=p+4*y;
s:=s union {y}
od;
return p-2*nops(s)
end proc;
seq(A386538(n),n=0..48);
-
a[n_] := Module[{p=4n},s = {}; Do[ y = Floor[Sqrt[n^2 - x^2]];p = p + 4*y;s = Union[s, {y}],{x,n} ];p - 2*Length[s]];Array[a,49,0] (* James C. McMahon, Aug 19 2025 *)
Showing 1-10 of 11 results.
Comments