A123699 Smallest b such that all digits are distinct in base b representation of n.
1, 2, 3, 4, 3, 3, 3, 4, 4, 5, 3, 4, 4, 4, 3, 5, 5, 4, 3, 5, 3, 5, 5, 4, 6, 6, 4, 4, 5, 4, 6, 6, 4, 6, 4, 4, 7, 5, 4, 5, 6, 5, 7, 4, 4, 7, 5, 5, 4, 4, 5, 4, 5, 4, 5, 4, 4, 5, 5, 6, 8, 6, 6, 9, 5, 5, 7, 6, 5, 5, 5, 7, 5, 7, 4, 5, 5, 4, 5, 5, 6, 5, 6, 5, 5, 5, 7, 7, 5, 6, 6, 8, 7, 6, 5, 5, 5, 8, 4, 11, 5, 5, 5, 7, 5
Offset: 1
Examples
n=10: 1010 [b=2] = 101 [b=3] = 22 [b=4] = 20 [b=5]: a(10)=5; n=11: 1011 [b=2] = 102 [b=3]: a(11)=3; n=12: 1100 [b=2] = 110 [b=3] = 30 [b=4]: a(12)=4; n=13: 1101 [b=2] = 111 [b=3] = 31 [b=4]: a(13)=4; n=14: 1110 [b=2] = 112 [b=3] = 32 [b=4]: a(14)=4; n=15: 1111 [b=2] = 120 [b=3]: a(15)=3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s={};Do[b=1;Until[id= IntegerDigits[n,b];Length[id]==CountDistinct[id],b++];AppendTo[s,b],{n,2,105}];Join[{1},s] (* James C. McMahon, Nov 24 2024 *)
-
PARI
a(n) = if (n==1, 1, my(b = 2, do = 1); while (do, vb = digits(n, b); if (#vb == #Set(vb), do = 0, b++); ); b); \\ Michel Marcus, Jun 09 2013; corrected Jun 14 2022
-
Python
from sympy.ntheory.digits import digits def distinct(n, b): d = digits(n, b); return len(d) == len(set(d)) def a(n): if n == 1: return 1 b = 2 while not distinct(n, b): b += 1 return b print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jun 15 2022
Comments