A123709 a(n) is the number of nonzero elements in row n of triangle A123706.
1, 2, 3, 4, 3, 4, 3, 4, 4, 6, 3, 8, 3, 6, 7, 4, 3, 8, 3, 8, 7, 6, 3, 8, 4, 6, 4, 8, 3, 11, 3, 4, 7, 6, 7, 8, 3, 6, 7, 8, 3, 11, 3, 8, 8, 6, 3, 8, 4, 8, 7, 8, 3, 8, 7, 8, 7, 6, 3, 16, 3, 6, 8, 4, 7, 12, 3, 8, 7, 14, 3, 8, 3, 6, 8, 8
Offset: 1
Keywords
Examples
a(n) = 3 when n is an odd prime. a(n) = 7 when n is the product of two different odd primes. [Corrected by _M. F. Hasler_, Feb 13 2012] a(n) = 15 when n is the product of three different odd primes. [Corrected by _M. F. Hasler_, Feb 13 2012]
Links
- M. F. Hasler, Table of n, a(n) for n = 1..500
- Peter Luschny, Re: Is the A123706 triangle an extension of the Moebius function?, seqcomp list, Feb 12 2012
Programs
-
Mathematica
Moebius[i_,j_]:=If[Divisible[i,j], MoebiusMu[i/j],0]; A123709[n_]:=Length[Select[Table[Moebius[n,j]-Moebius[n,j+1],{j,1,n}],#!=0&]]; Array[A123709, 500] (* Enrique Pérez Herrero, Feb 13 2012 *)
-
PARI
{a(n)=local(M=matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1); sum(k=1,n,if(M[n,k]==0,0,1))}
-
PARI
A123709(n)=#select((matrix(n, n, r, c, r\c)^-1)[n,],x->x) \\ M. F. Hasler, Feb 12 2012
-
PARI
A123709(n)={ my(t=moebius(n)); sum(k=2,n, t+0 != t=if(n%k,0,moebius(n\k)))+1} /* the "t+0 != ..." is required because of a bug in PARI versions <= 2.4.2, maybe beyond, which seems to be fixed in v. 2.5.1 */ \\ M. F. Hasler, Feb 13 2012
Formula
a(n) = 2^(m+1) - 1 when n is the product of m distinct odd primes. [Corrected by M. F. Hasler, Feb 13 2012]
For any k>1, a(n)=2^k if, and only if, n is a nonsquarefree number with A001221(n) = k-1 (= omega(n), number of distinct prime factors), with the only exception of a(n=6)=2^2. - M. F. Hasler, Feb 12 2012
A123709(n) = 1 + #{ k in 1..n-1 | Moebius(n,k+1) <> Moebius(n,k) }, where Moebius(n,k)={moebius(n/k) if n=0 (mod k), 0 else}, cf. link to message by P. Luschny. - M. F. Hasler, Feb 13 2012
Comments