A123711
Indices n such that A123709(n) = 8 = number of nonzero terms in row n of triangle A123706.
Original entry on oeis.org
12, 18, 20, 24, 28, 36, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208, 212, 216, 224, 225
Offset: 1
-
Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] :=
Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[500], A123709[#] == 8 &] (* G. C. Greubel, Apr 22 2017 *)
-
A123712
Indices n such that 16 = A123709(n) = number of nonzero terms in row n of triangle A123706.
Original entry on oeis.org
60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1
-
Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] := Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[6500], A123709[#] == 16 &] (* G. C. Greubel, Apr 22 2017 *)
-
is(n)=my(M=matrix(n, n, r, c,r\c)^-1); sum(k=1, n, M[n, k]!=0)==16 \\ Charles R Greathouse IV, Feb 09 2012
A123710
Indices n such that 4 = A123709(n) = number of nonzero terms in row n of triangle A123706.
Original entry on oeis.org
4, 6, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024
Offset: 1
A123706
Matrix inverse of triangle A010766, where A010766(n,k) = [n/k], for n>=k>=1.
Original entry on oeis.org
1, -2, 1, -1, -1, 1, 1, -1, -1, 1, -1, 0, 0, -1, 1, 2, 0, -1, 0, -1, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, -1, 1, 2, -1, 0, 1, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1, 1, -1, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 2, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0
Offset: 1
Triangle begins:
1;
-2, 1;
-1,-1, 1;
1,-1,-1, 1;
-1, 0, 0,-1, 1;
2, 0,-1, 0,-1, 1;
-1, 0, 0, 0, 0,-1, 1;
0, 0, 1,-1, 0, 0,-1, 1;
0, 1,-1, 0, 0, 0, 0,-1, 1;
2,-1, 0, 1,-1, 0, 0, 0,-1, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1;
-1, 1, 1,-1, 1,-1, 0, 0, 0, 0,-1, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1;
2,-1, 0, 0, 0, 1,-1, 0, 0, 0, 0, 0,-1, 1;
1, 1,-1, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1; ...
-
t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k+1], MoebiusMu[n/(k+1)], 0]; Table[t[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 29 2013, after Enrique Pérez Herrero *)
-
T(n,k)=(matrix(n,n,r,c,r\c)^-1)[n,k] \\ simplified by M. F. Hasler, Feb 12 2012
A123707
a(n) = Sum_{k=1..n} A123706(n,k)*2^(k-1).
Original entry on oeis.org
1, 0, 1, 3, 7, 14, 31, 60, 126, 248, 511, 1005, 2047, 4064, 8183, 16320, 32767, 65394, 131071, 261885, 524255, 1048064, 2097151, 4193220, 8388600, 16775168, 33554304, 67104765, 134217727, 268427002, 536870911, 1073725440, 2147483135
Offset: 1
-
t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k + 1], MoebiusMu[n/(k + 1)], 0]; Table[Sum[t[n, k]*2^(k - 1), {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
-
{a(n)=sum(k=1,n,(matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1)[n,k]*2^(k-1))}
A123708
a(n) = sum of unsigned elements in row n of triangle A123706.
Original entry on oeis.org
1, 3, 3, 4, 3, 5, 3, 4, 4, 7, 3, 8, 3, 7, 7, 4, 3, 8, 3, 8, 7, 7, 3, 8, 4, 7, 4, 8, 3, 13, 3, 4, 7, 7, 7, 8, 3, 7, 7, 8, 3, 13, 3, 8, 8, 7, 3, 8, 4, 8, 7, 8, 3, 8, 7, 8, 7, 7, 3, 16, 3, 7, 8, 4, 7, 13, 3, 8, 7, 15, 3, 8, 3, 7, 8, 8, 7, 13, 3, 8, 4, 7, 3, 16, 7, 7, 7, 8, 3, 16, 7, 8, 7, 7, 7, 8, 3, 8, 8, 8, 3, 13
Offset: 1
-
t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k + 1], MoebiusMu[n/(k + 1)], 0]; Table[Sum[Abs[t[n, k]], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
-
{a(n)=local(M=matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1);sum(k=1,n,abs(M[n,k]))}
A200521
Numbers n such that omega(n)=4 but bigomega(n)>4, i.e., having exactly 4 distinct prime factors, but at least one of these with multiplicity > 1.
Original entry on oeis.org
420, 630, 660, 780, 840, 924, 990, 1020, 1050, 1092, 1140, 1170, 1260, 1320, 1380, 1386, 1428, 1470, 1530, 1540, 1560, 1596, 1638, 1650, 1680, 1710, 1716, 1740, 1820, 1848, 1860, 1890, 1932, 1950, 1980, 2040, 2070, 2100, 2142, 2184, 2220, 2244
Offset: 1
-
Select[Range[2500], PrimeNu[#] == 4 && PrimeOmega[#] > 4 &](* Jean-François Alcover, Jun 30 2013 *)
-
is_A200521(n,c=4)={ omega(n)==c & bigomega(n)>c }
Showing 1-7 of 7 results.
Comments