cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A123711 Indices n such that A123709(n) = 8 = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

12, 18, 20, 24, 28, 36, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208, 212, 216, 224, 225
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
It appears that this equals A200511, numbers of the form p^k q^m with k,m >= 1, k+m > 2 and p, q prime. - M. F. Hasler, Feb 12 2012

Crossrefs

Programs

  • Mathematica
    Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] :=
    Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[500], A123709[#] == 8 &] (* G. C. Greubel, Apr 22 2017 *)
  • PARI
    
    				

A123712 Indices n such that 16 = A123709(n) = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
a(n) = A178212(n) for n <= 52, possibly more. [Reinhard Zumkeller, May 24 2010]
a(n) = A178212(n) for n <= 2000. - Bill McEachen, Jul 14 2024

Crossrefs

Programs

  • Mathematica
    Moebius[i_, j_] := If[Divisible[i, j], MoebiusMu[i/j], 0]; A123709[n_] := Length[Select[Table[Moebius[n, j] - Moebius[n, j + 1], {j, 1, n}], # != 0 &]]; Select[Range[6500], A123709[#] == 16 &] (* G. C. Greubel, Apr 22 2017 *)
  • PARI
    is(n)=my(M=matrix(n, n, r, c,r\c)^-1); sum(k=1, n, M[n, k]!=0)==16 \\ Charles R Greathouse IV, Feb 09 2012

A123710 Indices n such that 4 = A123709(n) = number of nonzero terms in row n of triangle A123706.

Original entry on oeis.org

4, 6, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].
Except for a(2)=6, these are proper prime powers, i.e., numbers p^k where k>1, p prime (A025475). - M. F. Hasler, Feb 12 2012

Crossrefs

Programs

Formula

a(n) = A025475(n) for n>2 (conjectured). - M. F. Hasler, Feb 12 2012

A123706 Matrix inverse of triangle A010766, where A010766(n,k) = [n/k], for n>=k>=1.

Original entry on oeis.org

1, -2, 1, -1, -1, 1, 1, -1, -1, 1, -1, 0, 0, -1, 1, 2, 0, -1, 0, -1, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, -1, 1, 2, -1, 0, 1, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1, 1, -1, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 2, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 1, 1, 1, -1, 1, -1, 0, 0, 0
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Unsigned elements consist of only 0's, 1's and 2's.

Examples

			Triangle begins:
1;
-2, 1;
-1,-1, 1;
1,-1,-1, 1;
-1, 0, 0,-1, 1;
2, 0,-1, 0,-1, 1;
-1, 0, 0, 0, 0,-1, 1;
0, 0, 1,-1, 0, 0,-1, 1;
0, 1,-1, 0, 0, 0, 0,-1, 1;
2,-1, 0, 1,-1, 0, 0, 0,-1, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1;
-1, 1, 1,-1, 1,-1, 0, 0, 0, 0,-1, 1;
-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1;
2,-1, 0, 0, 0, 1,-1, 0, 0, 0, 0, 0,-1, 1;
1, 1,-1, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1; ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k+1], MoebiusMu[n/(k+1)], 0]; Table[t[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 29 2013, after Enrique Pérez Herrero *)
  • PARI
    T(n,k)=(matrix(n,n,r,c,r\c)^-1)[n,k]  \\ simplified by M. F. Hasler, Feb 12 2012

Formula

T(n,1) = +2 when n = 2*p where p is an odd prime.
T(n,1) = -2 when n is an even squarefree number with an odd number of prime divisors.
A123709(n) = number of nonzero terms in row n = 2^(m+1) - 1 when n is an odd number with exactly m distinct prime factors.
Sum_{k=1..n} T(n,k) = moebius(n).
Sum_{k=1..n} T(n,k)*k = 0 for n>1.
Sum_{k=1..n} T(n,k)*k^2 = 2*phi(n) for n>1 where phi(n)=A000010(n).
Sum_{k=1..n} T(n,k)*k^3 = 6*A102309(n) for n>1 where A102309(n)=Sum[d|n, moebius(d)*C(n/d,2) ].
Sum_{k=1..n} T(n,k)*k*2^(k-1) = A085411(n) = Sum_{d|n} mu(n/d)*(d+1)*2^(d-2) = total number of parts in all compositions of n into relatively prime parts.
T(n,k) = mu(n/k)-mu(n/(k+1)), where mu(n/k) is A008683(n/k) if k|n and 0 otherwise. - Enrique Pérez Herrero, Feb 21 2012

A123707 a(n) = Sum_{k=1..n} A123706(n,k)*2^(k-1).

Original entry on oeis.org

1, 0, 1, 3, 7, 14, 31, 60, 126, 248, 511, 1005, 2047, 4064, 8183, 16320, 32767, 65394, 131071, 261885, 524255, 1048064, 2097151, 4193220, 8388600, 16775168, 33554304, 67104765, 134217727, 268427002, 536870911, 1073725440, 2147483135
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766(n,k) = [n/k].

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k + 1], MoebiusMu[n/(k + 1)], 0]; Table[Sum[t[n, k]*2^(k - 1), {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    {a(n)=sum(k=1,n,(matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1)[n,k]*2^(k-1))}

Formula

G.f.: Sum_{k>=1} mu(k) * x^k * (1 - x^k) / (1 - 2*x^k). - Ilya Gutkovskiy, Feb 06 2020
a(n) ~ 2^(n-2). - Vaclav Kotesovec, May 03 2025

A123708 a(n) = sum of unsigned elements in row n of triangle A123706.

Original entry on oeis.org

1, 3, 3, 4, 3, 5, 3, 4, 4, 7, 3, 8, 3, 7, 7, 4, 3, 8, 3, 8, 7, 7, 3, 8, 4, 7, 4, 8, 3, 13, 3, 4, 7, 7, 7, 8, 3, 7, 7, 8, 3, 13, 3, 8, 8, 7, 3, 8, 4, 8, 7, 8, 3, 8, 7, 8, 7, 7, 3, 16, 3, 7, 8, 4, 7, 13, 3, 8, 7, 15, 3, 8, 3, 7, 8, 8, 7, 13, 3, 8, 4, 7, 3, 16, 7, 7, 7, 8, 3, 16, 7, 8, 7, 7, 7, 8, 3, 8, 8, 8, 3, 13
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k].

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0] - If[Divisible[n, k + 1], MoebiusMu[n/(k + 1)], 0]; Table[Sum[Abs[t[n, k]], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Oct 26 2017 *)
  • PARI
    {a(n)=local(M=matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1);sum(k=1,n,abs(M[n,k]))}

A200521 Numbers n such that omega(n)=4 but bigomega(n)>4, i.e., having exactly 4 distinct prime factors, but at least one of these with multiplicity > 1.

Original entry on oeis.org

420, 630, 660, 780, 840, 924, 990, 1020, 1050, 1092, 1140, 1170, 1260, 1320, 1380, 1386, 1428, 1470, 1530, 1540, 1560, 1596, 1638, 1650, 1680, 1710, 1716, 1740, 1820, 1848, 1860, 1890, 1932, 1950, 1980, 2040, 2070, 2100, 2142, 2184, 2220, 2244
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2012

Keywords

Comments

I expect that A123709(a(k))=32.

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], PrimeNu[#] == 4 && PrimeOmega[#] > 4 &](* Jean-François Alcover, Jun 30 2013 *)
  • PARI
    is_A200521(n,c=4)={ omega(n)==c & bigomega(n)>c }
Showing 1-7 of 7 results.